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SUMMARY

The goal of this study was to develop a simple, yet realistic, model
of the interaction between the turbulent wave and current boundary layers.
Closure of the turbulence problem by an assumed eddy viscosity model was
selected in order to permit analytic solution of the governing equations.

A review of previously proposed eddy viscosity models revealed that
many of them had not been tested against experimental data. Therefore,
three of the more recent models were selected and compared with data from
laboratory experiments and the results of a higher order turbulence model.
The comparison revealed that the model of Grant and Madsen (1979 and 1986)
was the most successful of the existing models. However, the physically
unrealistic, discontinuous eddy viscosity used in this model resulted in a
poor representation of the velocity at the top of the wave boundary layer.
The above deficiency was removed by the development of an improved model,
with a continuous eddy viscosity, that resulted in a greatly improved fit
to the data. While the new model had a more complicated solution, it used
just one fitting parameter, as did all the existing models. However, the
new model was unable to represent adequately the effect of a change in the
angle between the waves and the current. This drawback was due to the
assumption of a time-invariant eddy viscosity made in all the above models.

Therefore, a model that allowed the eddy viscosity to vary in time was
developed. The assumption of a weak current relative to the waves was made
to simplify the governing equation and an approximate solution obtained for
the wave and current velocity profiles. While this model involved much
more algebra than before, the solution for the wave problem was found to be
very similar to that from the time-invariant model. The solution for the
current problem, which involved numerical integration, was simplified by
the development of an accurate analytic approximation.

Finally, the concepts of the modified wave friction factor and
excursion amplitude were used to develop analytic approximations to the
friction factor curves. These simplifications allowed the development of a
procedure whereby prictical problems could be scolved efficiently using no

more powerful a tcol than a hand calculator.




SIMPLE MODELS FOR TURBULENT WAVE-CURRENT BOTTOM BOUNDARY LAYER FLOW

PART I: INTRODUCTION

Background

1. As periodic waves propagate from deep to shallower waters, they
reach a depth beyond which the waves feel the presence of the bottom; i.e.,
the waves experience finite-depth effects. Conversely, the bottom which
agenerally consists of a movable sediment will from some point on feel the
presence of the wav=ee: i.e., the bottom sediments will respond to the
agitation associated with the waves.

2. Finite-depth effects on waves—such as shoaling and depth-
refraction—are generally considered for water depths less than half the
wavelength and are quantified through the use of potential wave theory,
i.e., a theory which, among other things, assumes the fluid to be inviscid.
While the use of potential wave theory is adequate for the prediction of
gross features, such as wave height transformations caused by finite-depth
effects, and the detailed local flow structure, e.g., wave orbital
velocities, over most of the water depth, it fails in predicting the flow
characteristics immediately above the bottom.

3. The reason for the failure of potential wave theory to accurately
predict the near-bottom flow characteristics of a wave motion is associated
with potential theory’s treatment of the fluid as ideal (inviscid). Thus,
potential theory allows for (and predicts) a finite slip-velocity to exist
immediately above the bottom, whereas a real (viscous) fluid must satisfy a
no-slip condition at a solid boundary. To obtain a realistic solution for
the flow characteristics in the immediate vicinity of the bottom, it is
therefore necessary to account for real fluid effects and impose the no-
slip condition on the solution.

4. Because of the oscillatory nature of the near-bottom wave motion,
the viscous effect (vorticity) associated with the satisfaction of the no-
slip condition has only a limited time, of the order half a wave period, to
be transmitted (diffuse) away from the boundary. For this reason, the
extent to which viscous, real fluid effects affect a wave motion is limited

to a thin layer—the wave boundary layer—immediately above the bottom,




while the motion farther away from the bottom is adequately described by
potential wave theory.

5. The existence of a thir wave boundary layer across which the fluid
velocity varies from zero (at the boundary) to its free stream value
(predicted by potential wave theory) gives rise to a very pronounced
velocity gradient, or velocity shear, within the wave boundary layer.

Since a high velocity shear within the wave boundary layer is associated
with large shear str :sses, energy dissipation rates, and turbulence
intensities when the flow turns turbulent, it is evident that an ability to
quantify any coastal process which directly or indirectly is influenced by
near-bottom flow characteristics requires an adequate understanding of and
ability to quantify the processes taking place within the wave boundary
layer.

Wave-current interaction

6. In the coastal environment, waves and currents are more often than
not present at the same time; e.g., local winds produce waves and give rise
to wind-induced slowly varying currents, or swell associated with distant
storms arrive in shallow waters where they encounter slowly varying tidal
currents. Thus, a motion characterized as the combined motion of waves and
currents may be considered the most commonly encountered flow condition in
near-coastal waters.

7. While the simultaneous presence of waves and currents in coastal

waters has been recognized in terms of the effect of currents on waves,

i.e., current-refraction, only recently has the potentially important
effect of waves on currents been recognized. The physics of the latter
wave-current interaction, i.e., the effect of the presence of waves on the

characteristics of a slowly varying current, is intimately related to the
processes taking place within the wave boundary layer.

8. To more fully appreciate this interaction, consider the near-
bottom flow associated with a constant forcing, expressed in terms of a
constant shear stress acting »n planes parallel to the bottom. For a
turbulent shear flow, the shear stress is supported through the vertical
mixing of high-velocity fluid from "far above” the bottom and low-velocity
fluid from the immediate vicinity of the bottom. The effectiveness of the

mixing process depends on the turbulent intensities and the velocity shear,

i.e., the scale of the velocity some distance above the bottom. Since the




turbulence intensities immediately above the bottom increase in the
presence of a wave motion, at least within the wave boundary layer, a
smaller velocity shear is required to support the same shear stress when
waves are present than that required in the absence of waves.

9. As a consequence of near-bottom wave-current interaction, the
prediction of the near-bottom current velocity profile is sensitive to the
presence of waves. Similarly, the bottom resistance experienced by a
current of a given magnitude is affected by the presence of waves. 1In
physical terms, the near-bottom wave-current interaction may be interpreted
as an apparent increase in bottom roughness experienced by a current in the
presence of waves relative to the physical bottom roughness experienced by
the same current in the absence of waves.

Wave-sediment interaction

10. For a bottom consisting of a movable sediment, the response of the
sediment to the fluid flow above the bottom depends on the forcing, i.e.,
the bottom shear stress, exerted on the bottom sediments by the flow.
Realizing that the vertical scale characteristic for a slowly varying
current is of the order of meters while the corresponding scale for a wave
motion, the wave boundary layer thickness, is of the order of centimeters,
it is evident that the velocity shear and hence the bottom shear stress
associated with a given near-bottom wave orbital velocity are far greater
than that asscociated with a current of comparable magnitude. For this
reason, waves, rather than currents, dominate fluid-sediment interaction in
the coastal environment.

11. While waves feel and respond to the presence of a bottom when the
depth is less than about half the wavelength, the bottom does not respond
to the presence of a wave motion above until this motion is sufficiently
strong, in terms of the bottom shear stress, to mobilize the bottom
sediments.

12. Once the critical condition for mobilization of the bottom
sediments has been reached or slightly exceeded, an originally flat bottom
becomes unstable. 1In the case of sediments characterized as fine sands and
coarser, this instability results in the appearance of bedforms, ripples,
on the bottom. For flow conditions exceeding only slightly the critical
condition for initiation of sediment movement, the ripples are quite steep,

sharp-crested, and essentially two-dimensional features aligned with the

10




wave crests. As the flow intensity, i.e., the bottom shear stress, is
increased, a point is reached when the sharp-crested ripples become
rounded, three-dimensional features of smaller steepness. Eventually, the
ripples are completely washed out and the bottom is again flat; however, in
contrast to flow conditions below critical, a "sheet" of sediment is now
moving back and forth above the bottom.

13. From a purely hydrodynamic point of view, the result of wave-
sediment interaction in terms of the formation of ripples means that the
flow in the immediate vicinity of the bottom must be treated either as a
flow over a wavy bottom, including the effect of flow separation over
ripple crests, or as a flow over a plane bottom for which a uniform
roughness, reproducing the flow resistance of the rippled bottom, is
assumed. In either case, the formation of ripples on the bottom
significantly complicates the analysis and requires knowledge of the bottom
bedform geometry or its equivalent roughness scale.

14. From the point of view of establishing a sediment transport model,
it may be argued that an ability to quantify sediment transport mechanics
for a pure wave motion is of minor importance. The argument would be that
the net sediment transport associated with a linear wave, for which the
motion back and forth is completely symmetrical, would consist of equal
amounts of sediment being moved back (under the wave trough) and forth
(under the wave crest) and therefore result in a vanishing net transport.
This argument pinpoints the major problem associated with the prediction of
rret sediment transport rates in the wave-dominated coastal environment as
the prediction of a small difference between two large quantities. Thus,
any effect producing an asymmetry in the motion, e.g., wave nonlinearity,
wave-induced mass transport, a sloping bottom, or superposition of a
current, potentially results in a net sediment transport. In order to
establish a model for the mechanics of sediment transport in the coastal
environment, it is therefore necessary to first establish a sediment
transport model for a pure wave motion.

Wave-current-sediment interaction

15. From the preceding discussions of wave-current and wave-sediment
interactions, it is evident that the physical bottom roughness experienced
by a combined wave-current flow is a dependent variable in that it depends

on the characteristics of predominantly wave-generated bottom bedforms.
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Thus, in a purely hydrodynamic sense, wave-current-sediment interaction
manifests itself through the production of a physical bottom roughness
resulting from bottom sediment response to the near-bottom flow above.

16. From the point of view of sediment transport mechanics in the
coastal environment, the presence of waves acts primarily as an agitating
agent, which mobilizes the bottom sediment and makes it available for
transport by currents superimposed on the waves. Because of the high
turbulence intensities within the wave boundary layer, sediment, in
particular fine sediments, will be put into suspension and made available
for suspension by the turbulence associated with the current outside the
wave boundary layer. In this respect, the increased flow resistance
experienced by a current in the presence of waves results in an increase in
turbulence intensities associated with the current. Thus, waves not only
make bottom sediment available for transport by a current but also increase
the current’s ability to transport through their generation of bottom
bedforms, i.e., an increased physical bottom roughness, and through
turbulent near-bottom wave-current interaction corresponding to an
increased apparent bottom roughness.

17. 1In addition to the effects of wave-current interaction on
turbulent mixing processes and thereby its effect on the vertical
distribution of sediment concentration, wave-current interaction also
affects the velocity with which the suspended sediment is advected through
the wave-current interaction’s effect on the current velocity profile. 1In
this respect, the extent of wave-current-sediment interaction—described
above as a one-way street in which interaction affects hydrodynamics which,
in turn, affects sediment transport—potentially may be further complicated
by the suspended sediment producinj a vertical density gradient of
sufficient strength to necessitate the treatment of the fluid-sediment

mixture as a "stratified fluid."

Objective

18. The overall objective of the present research is to develop a
comprehensive model of wave-current-sediment interaction consisting of the
elements identified and briefly discussed in the subsections of the

preceding section.
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19. The emphasis is on the development of a model which is internally
consistent and based on physically sound principles. 1In addition,
simplicity of model formulation and application is required in its
development so long as simplicity does not sacrifice the overall accuracy
of the model.

20. The requirement of internal consistency may be illustrated by
recognizing that the wave-current interaction model component ultimately is
to form the basis for the sediment transport model component. Since the
state of the art of sediment transport mechanics unfortunately is far from
being regarded as an "exact science," it is therefore not internally
consistent to seek an exact solution to the wave-current interaction
problem—even if this were possible. Combining this with the requirement
of simplicity of application rules out the appropriateness of elaborate,
sophisticated numerical models and justifies an emphasis on the development
of analytical model components whenever possible.

21. Thus the overall objective of this research is to provide a
comprehensive, computationally simple model for rapid solution of sediment

transport processes associated with dredging operations, e.g., prediction

of the fate of dredged material placed on the sea bottom in disposal

operation and infilling rates of dredged navigation channels.

Scope of This Report

22. The scope of this report is to present a simple, yet realistic and
accurate model for the calculation of the near-bottom turbulent flow
properties associated with the combined action of waves and currents.

23. Following a discussion of the basic physical principles underlying
a hydrodynamic model cof near-bottom turbulent boundary layer flows (Part
II), some previous eddy viscosity models used in these flows are reviewed
in Part III. The results of the selected models are compared with
available experimental data—both physical and numerical—and their
strengths and weaknesses are discussed.

24. An improved model based on a time-invariant eddy viscosity model
is presented in Part IV. This model represents an improvement over
currently available simple wave-current interaction models in that it

removes a physically unrealistic discontinuous eddy viscosity and extends
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the model applicability to any reasonable magnitude of the current velocity
relative to that of the wave orbital velocity. The former of these
improvements should remove some unrealistic features of discontinuous eddy
viscosity models when these are applied as the basis for sediment transport
calculations. The latter removes the limitation of the current being
either weak or strong relative to the wave motion; i.e., it makes the
resulting model generally applicable. The results of this model are also
compared with the same data used in Part III.

25. 1In Part V, the lack of physical realism of a time-invariant eddy
viscosity applied to the wave-current interaction problem is removed by
treating it as time-varying. Despite the added mathematical complexity
introduced by this assumption, an approximate analytical soclution has been
obtained. The wave part of this solution is adequately represented by the
solution obtained in Part IV; i.e., the time-invariant eddy viscosity
solution of Part IV serves the dual purpose of being an approximate model
in its own right and forming part of the improved solution presented in
Part V. The significant feature of the time-varying eddy viscosity
formulation is a much more pronounced and physically realistic dependency
of the current velocity characteristics on the angle between wave and
current motion than found in the time-invariant eddy viscosity formulation.

26. 1In Part VI, a simple procedure is outlined whereby the time-
varying model of Part V is applied to calculate the current velocity
profile for specified wave and current parameters using a no more powerful
tool than a hand calculator. Finally, the result of the wave-current
interaction models developed in this report are summarized and discussed in

Part VII.
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PART II: DERIVATION OF THE GOVERNING EQUATIONS

27. 1In this chapter, the linearized equation of motion for the bottom
boundary layer associated with waves is developed. The specification of
the bottom properties by a single equivalent roughness height is discussed
along with its use in determining the level of application of the no-slip
boundary condition. Various methods of closure for the problem of
turbulent flow are discussed. Finally, the assumption of a time-invariant
eddy vigcosity is used to separate the problem into a wave component and a
current component that can be solved for any assumed distribution of the

eddy viscosity.

Boundary Layer Approximation

28. The equations governing a two-dimensional flow of an

incompressible, homogeneous fluid over a plane boundary may be written

du du du 1 0p . 0(Txx/P) . 0(Tzx/p)
+ + = - = + + < 1
g Y Y9x Y Vo2 p Ox Ix 0z ()
Ow Ow Ow 1 Op 0(Txy/p) a(Tvy/p)
= - = - : o 2
Fe * Y9 T V02 03z "9 T 0x " 0 ()
u  Ow
= 3
P, P 0 (3)
where
u = the horizontal (x) velocity components
w = the vertical (z) velocity components
p = fluid density
P = pressure
g = acceleration Jdue to gravity
Tij = Tji = turbulent or viscous stresses
29. To simplify this set of equations, an order-of-magnitude analysis

is performed in which it is assumed that
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u = O(U) and -/T;‘—l = o(u?) (4)

while time and horizontal distances are scaled by the wave motion,
W = 27/T = radian frequency and k = 27/L = wave number , and the vertical

length scale is the wave boundary layer thickness, 6 , so that
d d d
Je = oW, Fo=o0(k) , g =0(1/d) (5)

30. Introducing these scales in the continuity Equation 3 gives

o[g%] + o[g%] = kU +w/bd=0 (6)

From Equation 6 the order of magnitude of the vertical velocity
W=o0(w) = (kO)U € U (7)

is obtained, and its smallness relative to U is a consequence of the
boundary layer assumption, k& € 1 .

31. Comparison of the orders of magnitude of the nonlinear convective
acceleration terms on the left-hand sides of Equations 1 and 2 with the

leading linear terms, e.qg.,

O[U%] = ku? ; o[g—:—] = WU (8)

shows that the order of magnitude of the nonlinear terms relative to the

linear terms is given by

uau/ax _ kU _ U
O[W]_w_c«l (%)
which is identified as the small parameter, U/c , ¢ = ¢/k 1is the phase

velocity of the wave, used in the Stokes expansion of a water-wave problem,
e.g., Ipren (1966).
32. Introducing the order-of-magnitude estimates obtained above in the

vertical momentum equation, Equation 2, this may be written as
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0(p/p = Tzz/p + gz)

. = O(wW + ku2) (10)

which may be integrated from some level =z , within the wave boundary
layer, to the outer edge of the wave boundary layer, =z = 0 where P = Px

and Tzz = 0 , to produce an expression

© o
"
s

+ % + g(6-2) + O[(uW + kUF)(6-2)] th

for the pressure within the wave boundary layer.

33. Differentiation of Equation 11 with respect to x , recalling that

d # §(x) and d/0x = O(k) , results in
1dp _ 1 O(pwtTsz) 2
P o + O[(WwW + kUZ)k0) (12)

34. Inspection of the last terms in this equation in conjunction with

the order-of-magnitude estimate provided by Equation 7 shows that

1 ap 1 ""(poo +727) U

= = = + 0 52 + wu,~X(ké 13
i i A wu(kb)2 + WU (k) (13)
35. When this expression is introduced in the horizontal momentum

equation, its components should be compared with the terms in this
equation. This comparison shows that the first term neglected by
discarding the last term in Equation 13 is at most of order (k0)? relative
to the leading term du/0t = O(wU) in Equation 1, while the second term is
of order ké relative to the convective acceleration terms, uau/ax =
O[WU(U/c)] , so long as Uy € U , which may safely be assumed. Thus, a

boundary layer approximation to the governing equations is obtained as

au au 1 0p 1 aTxy 1 a(Txx—Tyy)
- - : 4 = LLE
Jt * “B_ * w«a— P 3— p Oz P Jx (14)
with an order of accuracy of (k(5)2 ; i.e., the largest terms neglected are

of the order (k0)? relative to the leading terms retained.
36. Although the last term in Equation 14 involves the difference

between two terms of the same magnitude, cf. Equation 4, this term must be
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considered of order kUi . This, however, is of order k6 relative to the
preceding term, 3(sz/p)/5z = 0(03/5) , So within the accuracy of linear
wave theory, i.e., dropping the convective acceleration terms, the

linearized boundary layer approzimation is

Opx . 0(7/p)
SRl —5—Lz (15)

du
bu | _

|-

where the subscript notation on the turbulent or viscous stress on
horizontal planes has been omitted, since this distinction no longer is
necessary.

37. At the outer edge of the wave boundary layer, shear stresses

vanish and therefore

aum - 1 apm
Fe T T 0 Tx (18)

where the subscript L denotes conditions at the outer edge of the wave
boundary layer, =z = 0 . This equation is identical to the equation
governing the near-bottom orbital velocity in linear, potential wave
theory, e.g., Ippen (1966)

aw

Uy = ;I;FTEFT COSh(ké)COS(Ut - kx) (17)

where a 1is wave amplitude and h 1is water depth. At first, it may appear
that the value of {§ needs to be specified in order to determine the
pressure gradient driving the flow within the wave boundary layer.

However, expanding cosh(ké) around z = 0 results in

cosh(kf) = 1 + $ (k)2 + --- (18)
and to the same order of accuracy as the boundary layer approximation
itself, recall terms of order (k(5)2 were neglected in order to obtain

Equation 14, it is therefore permissible tc replace cosh(ké) in Equation

16 by unity. Therefore
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[
Uy = upcos(wWt - kx) = EI;%TEHT cos(Wt - kx) (19)

is identical to the bottom velocity predicted by linear potential wave
theory.

38. Returning to the order-of-magnitude estimates made earlier, the
velocity scale for horizontal velocities, U , is identified as up , the
near-bottom velocity predicted by linear wave theory. Furthermore, in the
immediate vicinity of the bottom, the left-hand side of Equation 15
vanishes because of the no-slip condition, and balancing the order of

magnitude of the remaining terms shows that
2
0 = o[y—t] (20)

or since Uy, is at most expected to be of order U , Equation 20 shows that
9]
o(kb) =~ o{—c-] (21)

which ensures that the approximations made in the derivation of the
linearized boundary layer approximation are internally consistent.

39. Inclusion of a steady current superimposed on the wave motion
would have resulted in the same linearized boundary layer approximation of
the governing equations provided the current velocity is scaled by U = up ;
i.e., so long as the current velocity is not an order of magnitude larger
than the wave orbital velocity.

40. The boundary conditions for Equation 15 are the no-slip condition
on the bottom and the requirement that the velocity inside the boundary
layer u should approach the external velocity u, at the edge of the
boundary layer.

41. The no-slip condition is imposed by requiring

u = o at z = 29 (22)
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where z( reflects the resistance offered by the bed to the flow. The
specification of 2zy will be discussed in the next section. The other

boundary condition is imposed by requiring

u < ug as z 2o (23)
42. Here 2z 1is taken to be the vertical coordinate scaled by the
boundary layer length scale 0 . since the scale is usually much less than

the depth of flow this condition constrains the effect of the boundary

layer to a small proportion of the depth.

Bottom Boundary Roughness

43. For turbulent flow over a rough surface, the boundary resistance
experienced by the flow is produced by form drag (separation and eddy
formation) and skin friction (direct shear stress) associated with the flow
around individual roughness elements. Thus, the flow in the immediate
vicinity of a rough bottom is in principle nonuniform. This condition is
true also for a so-called steady uniform turbulent flow over a rough
boundary consisting of, say, immobile sand grains, if one takes a
"microscopic view" of the flow within a distance of the roughness scale of
the boundary. However, farther away from the boundary the eddy motion can
no longer be distinguished as associated with a particular roughness
element; i.e., it becomes random in nature and may be interpreted as
"turbulent” eddies.

44. For distances farther away from the boundary than the physical
scale, kp , of the individual roughness elements, the commonly accepted
characteristics of turbulent shear flows apply; i.e., one may expect the
mean flow, u , to have a logarithmic profile and be given by (Schlichting

1968)

u = X2

K z9 (24)
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where

Uy = JF;7E = shear velocity
7b = bottom shear stress
K = von Karman'’s constant (K = 0.4)
z = height above bottom
z9p = measure of the boundary roughness
45. For a flow over a plane boundary consisting of uniformly

distributed, closely packed immobile sand grains, as in Nikuradse's (1932)
extensive experiments, it is natural to choose the boundary roughness
scale, kb , equal to the sand grain diameter, d . 1In this case,

kb = kn = d with kp denoting the equivalent Nikuradse sand grain
roughness of the boundary. With this interpretation of kp , the velocity

profile given by Equation 24 holds with

kn/30 for rough turbulent flow 70 < Ei%ﬂ
z2Q = Gk (25)
(3.3V/uy) /30 for smooth turbulent flow —132 < 5

where the generalization to cover smooth turbulent flow—UV denotes the
kinematic viscosity of the fluid—has been introduced according to
Schlichting (1968).

46. It is important to keep in mind that Equation 24 is valid only for
distances, z , from the boundary exceeding the physical scale, ky , of the
boundary roughness. Thus, the prediction of u = 0 at =z = zg which

follows from Equation 24 is purely formal and obtained by extrapolation

from the outer flow region. 1In fact, even the origin of =z is not readily
defined for a rough boundary. Fortunately the choice of location of
theoretical bed, i.e., 2z = 0 , affects the velocity predicted by Equation

24 significantly only for small values of 2z , where the solution, as
pointed out above, merely represents a mathematical continuation of the
outer flow.

47. While the physical interpretation of the scale of the physical
boundary roughness, ki , and the equivalent Nikuradse sand grain

roughness, kpy , as the sand grain diameter, d , for flow over a plane

bottom is a natural one, the situation is considerably more complicated if
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the bottom profile is nonplanar, i.e., if it exhibits features that are
large in comparison with the small distributed roughness elements
considered above. An example of this situation would be a rippled bed as
produced by waves propagating over a bottom consisting of movable
sediments.

48. The flow around large-scale distributed roughness features
contributes to the flow resistance experienced by the fluid above in much
the same manner as discussed for the small boundary roughness; i.e., the
large—-scale bottom features produce form drag as well as skin friction.

The only difference is the difference in scales of the roughness elements;
e.g., the physical roughness length scale, kb , is now the ripple height
rather than the sand grain diameter. Except for the difference in vertical
scale, the turbulent flow over large distributed roughness features may,
however, be treated in much the same manner as flow over a plane rough
boundary, i.e., with a velocity profile given by Equation 24 and T
interpreted as the average flow resistance per unit bottom area resulting
from form drag and skin friction. The only difference is that the distance
above the bottom above which Equation 24 is valid as well as the
uncertainty of assigning a theoretical bottom level, 2z = 0 , now are
scaled by the physical scale of the bottom features, ki .

45. The roughness scale influencing the velocity profile, i.e., zj
or kp , represents physically the scale of uniformly distributed, closely
packed, three-dimensional roughness elements—equivalent sand grains—
which placed on a plane boundary and subjected tc the same flow as the
nonplanar bottom would result in the same flow resistance. Thus, if the
bottom features are two-dimensional and oriented perpendicular to the flow,
such as ripples, the form drag on this type of bottom feature would be
expected to be considerably larger than the form drag on a three-
dimensional roughness element. For this reason, it is to be axpected that
the equivalent Nikuradse sand grain roughness, k; , corresponding to a
rippled bed would be considerably larger than the physical bottom roughness
scale, kh ¥ the ripple height . Thus, Grant and Madsen (1982) suggest
kn ~ 4ki, for steep ripples.

50. The alternative to the treatment of a nonplanar boundary as a
plane, artificially roughened boundary, is to mathematically account for

the waviness of the boundary. This approach has heen pursued for the case
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of a pure wave motion, e.g., Lyne (1971); Sleath (1974, 1976, 1982); S.to,
Mimura, and Watanabe (1984); and Shum (1988) based on an assumption of
laminar flow; and recently by Sato, Uehara, and Watanabe (1986) using a
turbulent closure model. Since :“he near-bottom flow in the coastal
environment is likely to be turbulent rather than laminar and to consist of
currents superimposed on waves, these models, which require extensive
computations, are not appropriate for the present model development.
Consequently, the present study treats the bottom as a plane horizontal
bottom of uniform equivalent roughness expressed by kp or zy as

introduced in Equations 24 and 25.

Turbulence Models

51. To solve the linearized boundary layer equation, Equation 15, a
model relating the shear stress, 7 , to the mean flow characteristics,

must be introduced.

52. For a laminar flow, this relationship is simply

T du Ow du

- =V + ~ 25
p [az ax] Oz ( )

with Vv denoting the kinematvic viscosity of the fluid and the term Ow / 0x
is neglected since it is of order 1x$)? relative to du/dz .

53. For a turbulent flow, the shear stress on horizontal planes is in
reality a momentum flux term——the Reynolds stress—which is related to

turbulent velocity fluctuations, denoted by primes, through

= -u'w (27)

IS

where the overbar indicates a time-averaged quantity and the modeliing of
this term is far from trivial.

54. For dimensional reasons, the problem of expressing the turbulent
Reynold’s stress may be recast as the problem of predicting a turbulent
eddy viscosity, V¢ , which is defined, by analogy to the kinematic

viscosity, through
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= -u'w = Vr§§ (28)

55. Advanced turbulence models consist of separate differential
equations from which V; 1is obtained as the product of a length scale—the
mixing length—and a velocity scale obtained from the calculation of the
turbulent energy. Models of this type have been employed recently by Celik
and Rodi (1985); Hagatun and Eidsvik (1986); Justesen (1988); and Davies,
Soulsby, and King (1988 for the treatment of wave-current interaction.
While these numerical turbulence closure models at present are far too
computationally involved and time-consuming to be of practical use as the
vasis for a general wave-current-sediment interaction model, they serve the
purpose of providing excellent and detailed results against which far
simpler models may be tested.

56. A simple model for the turbulent Reynolds stress may be obtained
using Prandtl’s mixing length hypothesis (Schlichting 1968) in which it is

assumed that

u’ = - ﬁg% and w o= L g% (29)
so that

% = -u'w’ = {2 g-% g% (30)
with €2 = {7 {, denoting Prandtl’s mixing length. From analogy with steady
turbulent flow it may be assumed that £ = Kz , where K is von Karman's

constant, at least close to the bottom.

57. Bakker (1974) followed by Bakker and van Doorn (1978), and van
Kesteren and Bakker (1984) used a mixing length closure formulation, as did
Asano and Iwagaki (1986), to obtain solutions to the turbulent wave-current
interaction problem. While computationally far less involved than the
numerical turbulence closure models mentioned previously, the mixing length
models require numerical solution of the governing equations in order to

provide results. This requirement limits their usefulness for general
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application, although results obtained in this manner may be used for
comparison with simpler analytical models.

Eddy viscosity models

58. Rather than assuming u’ and w’ both to be scaled by the mean
velocity gradient, one may assume that wuy = J Tbl/p , at least very close
/

to the bottom, scales w’' . This assumption results in Equation 27

becoming

T
) = -u'w = gu*a; (31)
in which fu* is identical to the turbulent eddy viscosity, V; , defined

by Equation 28. With 14 being the mixing length, comparison of Equations
28, 30, and 31 shows that

Ou

v = {2 7l = luy (32)

which is an identity when u 1is taken as the logarithmic velocity profile
given by Equation 24 and { = Kz
59. The preceding considerations suggest that the turbulent eddy

viscosity should vary according to

Vi = Kuyz (33)
with

ue = V[7u]/p (34)
in the immediate vicinity of the bottom. In this respect, it is of some

interest to note that the condition of V¥t varying according to Equation 33
as z <+ 0 1is used as a boundary condition in numerical turbulence closure

models.

Use of a time-invariant eddy viscosity

60. Since the problem of the wave boundary layer is unsteady, it would
be expected that the eddy viscosity defined by Equation 28 and expressed in
terms of a mixing length arguments through Equations 32 and 33 would be a
function of time. Thus, if a pure first-order wave motion in considered,

the bottom shear stress may be expressed as
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Tb = Tom|£(t)[£(t) (35)

in which 7pp denotes the maximum bottom shear stress and its temporal
variation is formally expressed by if(t)]f(t) about which it is known
only that |f(t)| =1 .

61. Introducing Equation 35 in Equations 34 and 33 yields a time-

varying eddy viscosity given by
Vi = Kugmz|£(t)]| (36)

in which uyp = J?E;7E is the shear velocity based on the maximum bottom
shear stress.

62. All arguments presented so far for the functional form of the
turbulent eddy viscosity have invoked assumptions applicable to the
immediate vicinity of the bottom, i.e., for 2z < zg* . For this region, the

linearized governing equation, Equation 15, may be integrated to give

YA
T - Tp = J [p-g% + 31:m]dz ~ 0 (37)
zg
or
T d T
i Ku*mzlf(t)l-ag’._‘.’p—b= uem?| £(t) [ £(t) (38)

valid for z < zg* .
63. Equation 38 may be solved, subject to the no-slip condition at
z = 29 , to give the velocity profile in the immediate vicinity of the

boundary

uo= 2xm 2 ey (39)
K zZ90

64. The exact same equation for the near-bottom velocity at the time
it is maximum, i.e., when f(t) 1is unity, can be obtained if the time-
varying eddy viscosity given by Equation 36 is replaced by a time-invariant

eddy viscosity based on the maximum bottom shear stress. In this case
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vy = KU*mZ (40)
and the near-bottom velocity

u Z
u = —/*Cﬂ lnz—o ey £(t) (41)

is obtained.

65. Comparison of Equations 39 and 41 shows the maximum near-bottom
velocity [f(t) = 1] to be independent of whether a time-varying or a time-
invariant eddy viscosity is used so long as the time-invariant eddy
viscosity is scaled by the shear velocity obtained from the maximum bottom
shear stress. While heuristic in nature, the preceding argument serves to
support the adoption of a time-invariant eddy viscosity formulation, based
on the maximum bottom shear stress, for the solution of unsteady turbulent
wave boundary layer flows.

66. The use of a time-invariant eddy viscosity greatly simplifies the
computational aspects of the problem. It is shown in the next section how
this assumption allows the governing equation to be conveniently separated
into a wave component and a current component.

67. Eddy viscosity profiles that are scaled as in Equation 33 by the
shear velocity and a length scale have been used to obtain a simple
analytic solution for steady turbulent flow problems. Kajiura (1964, 1968)
has found that the use of a time-invariant eddy viscosity is sufficient to
capture the gross features of the wave boundary layer. For these reasons,
this study will be restricted to time-invariant eddy viscosity
distributions. The evolution of such models for the wave and wave-current

problems is discussed in Part III.

Equations for Waves and Current

68. Using the idea of a turbulent eddy viscosity as defined in

Equation 28 in Equation 15, the governing equation can be written as

a1 d a
e ;VP + H'Z‘{VL‘(’];] (42)
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where

4= {u,v} = horizontal {x,y} velocity vector

V = {d/0x, 3/0y} = horizontal gradient operator

p = fluid density

p = pressure

z = height above bottom

69. Separating the variables, 4 and P , into time-invariant

(current) and time-varying (wave) components, i.e.,

> >
uc+uw

cé
"

P = Pc *+ Pw (43)

it is quite simple, since Vi 1is assumed time-invariant, to separate the

governing equation into two equations: one governing the waves

Rt - 5 ()

the other governing the current

0= —%Vpc + g;[”tg?] (45)

Equation governing the waves

70. Without loss of generality, the wave is assumed to propagate in
the x-direction so that ﬁw = uy . Furthermore, the wave pressure gradient
may be expressed in terms of the near-bottom velocity predicted by linear

wave theory as shown in Equation 16, i.e.,

Ou 14

azs_o =-3 EW (46)
where

Uy = upcoswt = (ApW)cosut (47)
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71. Introducing Equation 46 in 44 and making use of the fact that
ug # ux(z) , so that 5uw/3z = a(uw - um)/ﬁz , the equation governing the

wave orbital velocity within the wave boundary layer may be written

Q_{uw = Uy) a(uw - fo;)] (48)

B g:[”t——az——*

72. Since this equation is linear and since V; 1is time-invariant,
the simple harmonic forcing suggests that the solution of Equation 48 is
simple harmonic. It is therefore convenient to employ complex variables

and assume

Uw = Uy
ut

= Re{ugei®ty (49)
where Re{ } denotes that the real part of the complex solution represents
the physical solution sought, i = J:T , and ud 1is a complex function of
z .

73. Introducing Equation 49 in 48 and dispensing with the explicit
reminder that only the real part of the complex expression makes physical
sense leads to the equation governing the orbital velocity within the wave

boundary layer for a simple periodic wave

d dud .

—_— Vi -_ =

dz[ taz ] toud = 0 (50)
74. Since both Equations 44 and 45 are linear, ug and uy will both

have to satisfy the bottom boundary condition, given by Equation 22,
individually. The upper boundary condition for the wave problem will still
be as in Equation 23 since the wave boundary layer is expected to be small
even in the presence of a current.

Eguation governing the current

75. Denoting the magnitude of the current velocity vector by
Ue = Iﬁcl = ue{z) Equation 38 may be written
d due pe
vw—1\ = =
7= "az ) " |V (51)
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which may be integrated from the bottom, z ~ 0 , where Vyduc/0z = Te/p + to

a level 2z in order to obtain

&

76. Realizing that the near-bottom flow is limited to a fraction of

z (52)

the total depth, h , over which the average shear stress varies from its
maximum value of 7 to zero, the second term on the right-hand side of
Equation 52 is of the order (z/h) € 1 relative to 7¢/f . Thus, the
pressure gradient term in Equation 52 may be neglected, and the resulting
equation governing the current—often referred to as "the law of the wall"
(e.g., Schlichting 1968) —becomes

Vtggg = %ﬁ = Uic (53)
with uye = J?:7E denoting the shear velocity associated with the current
boundary shear stress.

77. Equation 53 is a first-order equation and requires only one
boundary condition. The appropriate condition is the no-slip condition,
Equation 22, which will give the effect of the boundary on the current
flow.

78. Equations 50 and 53 can now be solved for any assumed vertical
distribution of the eddy viscosity to give the wave and current velocity

profiles. This procedure will be carried out in Parts III and 1IV.




PART III: REVIEW OF PREVIOUS MODELS

79. In this part, the development of eddy viscosity models scaled by
the shear velocity for the wave current problem will be reviewed. Three of
the more recent models will be discussed in detail, and the results

obtained compared with experimental data.

Development of Eddy Viscosity Models

80. The first application of a turbulent eddy viscosity scaled by the
shear velocity to a wave boundary layer was done by Kajiura (1964). He
used an eddy viscosity that increased linearly with distance from the
bottom analogous to the distribution used successfully to model steady
flows. A modification was presented to account for boundary layers in the
smooth and intermediate turbulence regimes. Using these models, he
obtained graphs for the wave friction factor for various flow regimes that
were in good agreement with existing experimental data. 1In a later
publication, Kajiura (1968) proposed a tri-linear form of the eddy
viscosity for the wave boundary layer.

8l1. BAn important feature of these models—and of most of the
succeeding ones—was that the eddy viscosity was considered to be time
invariant. This allowed a relatively simple solution to be obtained and,
as shown in Part II, makes it possible to separate the wave-current problem
into wave and current components making the solution of both more
straightforward. Another feature of the 1968 model was that the eddy
viscosity was scaled by a shear velocity based on the maximum shear stress
rather than a representative "average" value.

82. The first application of this kind of eddy viscosity model to the
wave current problem was made by Lundgren (1972). He considered a two-
layer model with the flow in the upper layer influenced only by the current
eddy viscosity while the flow in the lower layer was affected by the
turbulence (and therefore the eddy viscosities) due to both wave and
current. The combined eddy viscosity in the lower layer was obtained by
the vector sum of the wave and current eddy viscosities which were scaled
by their respective shear velocities. The current eddy viscosity was

calculated according t< the parabolic distribution used in steady open
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channel flow while that for the wave was obtained from an empirical
expression based on measurements in the pure wave boundary layer made by
Jonsson (1963 and 1966). These measurements show that the assumption of a
linearly varying eddy viscosity close to the bottom is correct. However,
the values decrease exponentially beyond a certain height above the bottom.
The current velocity profile was obtained by the numerical integration of
the resulting expressions. Here too the wave eddy viscosity was considered
time invariant and was scaled by the maximum shear velocity.

83. The later models differ from Lundgren’s model in the vertical
structure of the eddy viscosity distribution and also by the use of
different definitions of the scaling shear velocity. Smith (1977) also
proposed a linearly increasing eddy viscosity scaled by the sum of the wave
and current shear velocities inside the wave boundary layer. Outside this
layer, the current shear velocity was used while keeping the eddy viscosity
continuous at the interface. This allowed the current velocity profile to
be expressed analytically.

84. The first model that allowed for any angle between the wave and
the current and that scaled the eddy viscosity by both the waves and the
currents inside the wave boundary layer and the current alone outside the
wave boundary layer was that of Grant and Madsen (Grant 1977; Grant and
Madsen 1979). Their eddy viscosity was discontinuous at the outer edge of
the wave boundary layer, and the solution for the current was sensitive to
the definition of this outer edge. Some minor modifications to this model
were proposed by Christofferson and Jonsson (1985) while retaining the
discontinuity in the eddy viscosity. They also proposed a model with a
constant eddy viscosity inside the boundary layer for very rough flows.

85. Further models were proposed by Tanaka and Shuto (1981) and
Tanaka, Chian, and Shuto (1983). They used the combined shear velocity to
scale the eddy viscosity over the entire depth with a one-layer (1981) and
two-layer (1983) vertical structure.

86. In the following sections, three of these models will be presented
in some detail and compared with experimental results. The models are a
simplified version of the Grant-Madsen model (referred to as the GM model),
the model proposed by Smith (1977) (referred to as the SM model), and the
model proposed by Tanaka, Chian, and Shuto (1983) (referred to as the TS

model). Also described is a higher orde. numerical turbulence closure
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model presented by Davies, Soulsby, and King (1988) which is later used as

a source of data to use in comparing the performance of the various simple

models.

The Grant-Madsen Model

87. The GM model uses the following time-invariant eddy viscosity

variation.

Kuxcw z < £
Vy = (54)
K:U*C z > e
and the boundary layer thickness { was defined by
K .

! = uﬁ (55)
where 7 is a parameter uefining the height of the wave boundary layer.
Grant (1977) and G and Madsen (1979) suggested a value of 2.0 for 7 ,
while Grant and . ‘sen (1986) suggested a value between 1.0 and 2.0.

88. Ir Grant (1977), wux¢ and uuew were defined by time averaging

the total bottom shear stress and the absolute value of the total shear
stress. respectively. However, in the definition of the maximum wave shear
stress that was used to close the problem, the value of wuycw was based on
the maximum total shear stress. In the model presented by Grant and Madsen
(1979), a uycw based on the maximum shear stress was "sed throughout the
derivation.

89. The original GM model assumed a time-invariant eddy viscosity
which would result in a sinusoidal variation of the bottom shear stress.
For this reason their assumption of the bottom shear stress being
proportional to |cos(wt)|cos(wt) is actually inconsistent with their
model formulation. This inconsistency was removed in the formulation given
in Grant and Madsen (1986) where u4: and u4cw are defined directly from
the current bottom shear stress and the maximum bottom shear stress. This
was also the formulation given in Wiberg and Smith (1983). The new

formulation makes the implementation of the model much less complicated
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while giving results that are within 10 percent of the results obtained
from the full model. However, the full model did indicate that the
reference current velocity within the wave boundary layer was not in the
same direction as the mean shear stress. This aspect of the problem is not
brought out by any of the time-invariant eddy viscosity models considered
in this study, while it is present in higher level turbulence closure
models.

90. The combined shear velocity is defined by

Ugew = (56)

n;ql
3

where 7T, 1s the maximum wave current bottom shear stress. If 7w 1is the
maximum wave shear stress, T¢ the average current shear stress and ¢cw

the angle between the wave and the current, Tm 1s given by

fm = (Tw + Tecosfew ,  Tesiney) (57)

and therefore

1

Tw = |?m| = (Tw? + Te2 + 2TCTWCOS¢CW)§
1
= Twm(1 + 2p2cosfcew + pt)? (58)
where
Te Uy
b= 7.~ ;f; (59)

1s a parameter expressing the relative magnitude of the turbulence
intensity induced at the bottom by the current and the waves.

Wave problem

91. The equation to be solved is Equaticn 50. In the GM model, the
wave problem is solved by assuming a linearly increasing eddy viscosity for

the whole depth. Substituting this variation into Equation 50 gives

d—— Ku zM - iduyg = 0 60
dz *Wq, “ud = ( )

34




92. This equation can be simplified by scaling the vertical coordinate

by the boundary layer scale 6 and introducing
z
(=3 (61)

where

§ = KYxcw (62)

93. Substituting Equations 61 and 62 into Equation 60 leads to

d

d .
H[CE%Q] + 1% = 0 (63)

which is recognized (Hildebrand 1976, p 153) as a special form of the
Bessel equation that has a general solution expressed in terms of the
Kelvin functions of zeroth order. The solution for uq in Equation 63 can

be written as

ud = Alker(2y/{) + i kei(2y()] + B{ber(2/() + i bei(2y()} (64)

where A and B are complex constants to be determined from the boundary
conditions. These are given by Equations 22 and 23. Equation 23 is
satisfied only if B = 0 since the functions ber and bei become
exponentially large for large argument (Abramowitz and Stegun 1972,

Chapter 9). Equation 22 then results in

Afker(2y(o) + i kei(2y(y)] = -1 (65)

from which the solution for ud 1is obtained as

_ -lker(2y() + i kei(2y())
ker (2v/Co) + i kei(2yCo)

ud (66)

94. Recalling the definition of wu4 , Equation 49, the solution for

the wave velocity uy is found to be
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e = upred [1 - ker (2V() + i kei (VD) | i (67
ker (2yCo) + i kei(2y/(o)

95. To close the problem, the definition of the maximum wave bottom

shear stress is used to write

%ﬂ = max{[VrgEﬁJzzzo} (68)

which, using the definition of uq in Equation 49, can be written as

aud
ac

Uy

T e “"[?r

'bl‘l
)

] (69)
z=29

96. Substituting for Vy; from Egquation 54 gives

aud
ac

ugw? = Ku*cwub[C ]z=zo (70)

and considering Equation 66 this can be written as

ugw? = Ku*cwubvzg IA[ker,(2¢?6) + 1 kei’(2vz3)]| (71)

where the primes denote differentiation with respect to the argument of the
function and A 1is given by Equation €5. It is seen from Equations 56 and
58 that if uy4e¢ and ¢cw are known tnis equation is an implicit equation
for uyw .

Current problem

97. The relevant governing equation in this case is Equation 53, where
Yy 1is given by Equation 54 for the current velocity profile. As stated

before, ¢ , the height of the wave bourdary layer, is defined by

{ =76 (72)
where 6 is defined in Equation 62. This leaves 7 as an unresolved model
parameter that can be determined by fitting, e€.g., experimental data.

98. For the region =z < 76 the solution to Equation 53 is found as
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2
- Yxew® (2
Uc KUgpcw n[zo (73)

after using the no-slip condition at 2z = zp .
99. For the region z > 70 , the solution is
ue = Eiﬁ ln[%z} + c (74)

where C 1is a constant found »y requiring the velocity to be continuous at

the level £ . After matching the velocities, the full solution is
u C2 z
—*L_)nl=— z < 70
Kugcew zg
Ue = (75)
Uxc 1n[7- ] + 2xe 1n[l§” z > 76
K [ ?5 Uxcw A 7

Solution of practical problems

100. 1In the usual application of wave current theory, the wave
characteristics wu}, and ¢ are known as is the bottom roughness kp . The
current is specified by a mean shear stress, a mean velocity, or a velocity
at a specified height above the bottom. It is generally required to find
uyw and uygcw in order to calculate the velocity profile given by Equation
75.

101. Once the model is chosen by specifying a value of 7 , an
iterative solution procedure must be adopted. This procedure is discussed
in detail in Part VI. For the sake of completeness, it is mentioned here
that the procedure consists of solving Equations 71 and 75 in succession

until the value of wuy¢w converges.

The Smith Model

102. Smith (1977) proposed an eddy viscosity model as follows:

K(ugw + uUgc)z z < {
by = (76)

. ZU v\v]
A,U*(:[‘. + _U—*(tJ z > ¢
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103. While the model presented was limited to co-directional waves and
currents, an extension to the general case could be made by using the
approach of Lundgren (1972). As in the GM model, the wave problem is
solved by assuming that the linear eddy viscosity extends over the whole
depth. The difference here is that the combined shear velocity is obtained

from

Ugxew = Uxce + Uxw (77)

instead of Equation 56. { is a length scale defined by

¢ = (78)

104. Smith (1977) originally defined ¢ such that 7 = 1 but as in
the GM model of the previous section, 7 will be left as a free model
parameter. The use of uyy in Equation 78 as compared with uycw 1in
Equation 62 should be noted.

Wave problem

105. The problem is identical to that in the GM model, and Equation 71
should be used. The only difference is that uycw , uxw , and uy¢ are
related by Equation 77 instead of by Equation 58.

Current problem

106. The equation to be solved is Equation 53 with VYVt from Equation
76. After solving this equation using the no-slip condition and matching

the velocity at =z = ¢ , the current velocity profile is obtained as

_ugc? 1nl2%- z < ¢
KU*CW Z(
ue = (79)
uir ln[z : e/p] 2 > {
1
where
_ 1 29 w/ i1/ )
o= e e .

with 4 defined by Equation 59.
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107. The solution procedure is the same as that outlined in paragraphs

100 and 101 with the limitation to co-directional waves and currents.

The Tanaka, Chian, and Shuto Model

108. Tanaka, Chiang, and Shuto (1983) proposed the following eddy

viscosity profile for both the wave and current problems.

Kuycw z < d
vy = (81)
Zh
K’ Max J (U - u)dz| = Kugcwd z >d
Q

109. Here K’ is a constant taken as 0.016 and u and uy, are the
horizontal velocities inside, and just outside the bcundary layer,
respectively. Tanaka, Chian, and Shuto (1983) use the maximum combined
velocity at the free surface for wuy , thus indicating that they considered
the current boundary layer as the relevant one for this integral. zp |is

the flow depth. uyxcw is defined as in the GM model, i.e.,

-
ugew = [=T° (82)

g

110. This model was presented only for the co-directional case, but

extension to the general case could be made using the formulation given in
Tanaka and Shuto (1981).

Wave problem

111. As in the wave problem of the GM model the governing equation can
be non-dimensionalized by defining ( and 0 by Equations 61 and 62 to

give

g?[cgud] + idug = 0 (83)

for the region =z < d . For the region 2z > d , the use of the appropriate

eddy viscosity from Equation 81 in Equation 60 results in
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o " F (eh

ﬂ=% (85)

112. Now Equation 83 is the same as Equation 63; therefore, for

z < d, we can write

ud = Afker(2y/{) + i kei(2y()] + Blker(2y() + i kei(2y()] (86)

and the solution of Equation 84 gives for z > d

Vi/B¢ -Vi/B¢

ug = Ce + De (87)
where A, B, C , and D are complex constants to be determined by the
boundary conditions and the requirements that the velocity and its gradient
be continuous at z = d .

113. Tanaka, Chian, and Shuto use the no-slip condition, i.e., Equation

22, and require

dugd
dz

=0 at 2z = zh (88)

This condition does not appear to be very rea'istic, but, as will be shown
later, is practically the same as the use of Equation 23 for the cases
considered.

114. After using the boundary and matching conditions, the following
four simultaneous equations are obtained for A , B

’ C , and D

Afker (2/(g) + i kei(2y/{q)] + B(ber(2y/(q) + i bei(2y{o)) = -1 (89)
Arker(2V0) + i kei(2yf)) + Biber(2yf) + i bei(2yl)]

Vif -Vif

= Ce + De (90)
Arker’ (2yf) + i kei’ (2yf)) + Biber’ (2y/f) + i vei’ (2y0))

= C\/i_em - D\/i_e_m

(91)
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Ce¢i/54h - pe~Vi/Bln _

(92)

where

(n =5 (93)

115. It is seen from Equation 92 that if Ch is large, i.e., if the
flow depth is much greater than the boundary layer scale, C 1is a very
small fraction of D and setting C to zero would produce a negligible
change in the solution. This is the same as if Equation 23 had been used as
a boundary condition instead of Equation 88. Following the solution for
the constants A, B, €, and D , the problem is closed by defining usw

as in the GM model, i.e.,

l?ud
ac

ugw? = xu*cwub[C ]z=20 (94)

and, using Equation 86, results in

ugw? = Ku*cwubJZB|A[ker’(2Jz6) + i kei’ (2y/Co) 1
+ B(ber’ (2y/{0) + i bei’ (2y(o) ]| (95)

which is an implicit equation for uyy.

Current prokliem

116. Again, a solution to Equation 53 with V{; from Equation 81 in
this case is needed. However, for the region =z > d , Tanaka, Chian, and
Shuto use a linear decrease of the mean shear stress to zero at the free

surface. This decrease results in the equation

dug z 1
Vp— = 201 - = 9
t‘dz Ugg [ Zh) (96)
for the region =z > d . Solving Equations 53 and 96 and matching the
velocity at z = d , the current velocity profile is obtained as
u (‘2 r4
—£C_ 1= z < d
KUyew z9
ug = (97)

_uge? (1) 2%
Kuycw d 2zy

41




Determination of d

117. So far the value of d has not been given explicitly in terms of
the other quantities, but only as the integral in Equation 81. Tanaka,
Chian, and Shuto evaluate this integral by assuming that uyx 1is the
combined wave and current velocity at the free surface and that d is much
greater than 23 . The result is a cubic equation for d which can be

expressed in the present notation as

Kl S 52 1 1*(2 6U*W2
1 Y — + — - +
s K [{2 * 3 65] U*Cw2 Zhu*cwv2 (98)
where
d
8 = — 99
Zh (99)

and 0 is defined in Equation 62.
118. Therefore in the iterative solution procedure, d 1is also

continually updated by the use of Equation 98.

Numerical Turbulence Model of Davies, Soulsby, and King

119. BAs mentioned in Part II, solution of the governing equation
(Equation 15) requires a definition of the shear stress term on the right-
hand side. 1In turbulent flow, this term is actually a momentum flux term
known as the Reynolds stress and is defined by Equation 27. The problem of
expressing this stress in terms of the mean flow variables is known as the
turbulence closure problem.

120. The simplest way of doing this is by defining an eddy viscosity as
in Equation 28 and then prescribing the variation of this quantity in time
and space. This is the method used in the simple models considered in this
study. These models are known as zero equation models and have the
drawback of being able to predict only the gross flow properties.

121. The next step up in complexity is to define the eddy viscosity as
the multiple of a velocity scale and a length scale { . The velocity scale
is taken to be the square root of k —the average turbulent kinetic
energy. An equation for k is then derived in terms of the mean flow
variables with the turbulent energy dissipation ¢ expressed in terms of

k and £ . The problem is closed by specifying the variation of the length
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scale. These are known as one-equation models and, in common with the
simpler mixing length models described in Part 1I, have the disadvantage
that the variation of ¢ must be assumed. A further refinement is then to
derive an equation for either € or the mixing length ¢ . This results in
a two-equation model which has been used successfully for two-dimensional
flows.

122. The numerical model used by Davies, Soulsby, and King (1988) is of
the latter kind with equations for k and £ in addition to the equations
for the velocity. The boundary conditions used for the k equation are
those of zero energy flux at the bottom and the free surface wuaile the
condition on ¢ is that it approaches the value £Kzg as 2z approaches
z) . It can be shown, however, from the k equation and its boundary
condition that very near the bottom k 1s proportional to the square of
the shear velocity. Taking this in conjunction with the boundary condition
on ¢ and the definition of the eddy viscosity means that the eddy
viscosity is constrained to approach a value proportional to uyzgp as z
approaches zg . In other words the eddy viscosity will vary linearly very
close to zg .

123. This shows that the vertical variation of the eddy viscosity used
in this model is of the same form as that used in all the simple models very
close to the bed. The reasoning behind the use of the linearly varying
eddy viscosity throughout the depth in the GM model is that the variation
close to the bed is the controlling factor in determining the shear stress
rather than the variation away from the bed. If this is the case, the
predicted shear stresses from both models should be similar.

124. However, the numerical model allows for a time-varying eddy
viscosity that is obtained with greater sophistication than in the simple
models. For this reason, the velocity profiles, etc., obtained from the
numerical model are considered to represent accurate solutions to the
governing equations and provide a good data set for comparison with the
results of the simple models.

125. 1In the implementation of the model, the steady current is
generated first by imposing an oscillati..g pressure gradient of tidal
frequency. After the initial transients have died away, this is replaced
by a steady pressure gradient and the solution run on until a steady state

is reached. Then the wivess are applied by imposing an oscillating pressure
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gradient at the wave frequency such that the required wave motion is

obtained after the solution has converged. This condition corresponds in
nature to the driving force behind the current remaining unchanged before
and after the waves. Therefore, the depth-averaged current velocity will

change after the wave motion is imposed.

Experimental Data

126. Many of the models discussed so far have been presented only as
theories with no comparison of results with experimental data. An
exception is the TS model which was compared with experimental data
obtained by Tanaka, Chian, and Shuto (1983) from a wind tunnel. This
experiment will be discussed along with the comparison of the TS model to
the selected data. One reason for the lack of comparisons has been the
paucity of good experimental data from unsteady turbulent boundary layers,
particularly for the wave-current interaction problem.

127. The data available for comparison are of two kinds—physical and
numerical. Physical data are those measured from the laboratory and field.
They are more meaningful in that they are from the real world where all
models must ultimately be applied, but their disadvantage is that the
conditions during the measurement may not correspond to those assumed in
developing the theory.

128. Numerical data are obtained by solving the same governing
equations numerically using sophisticated higher order turbulence closure
models. The conditions assumed are similar to those used for the present
theories; therefore, they provide a good test of the performance of the
simple eddy viscosity closure models in simulating the "exact” numerical
solutions. Furthermore, the numerical models may be able to simulate
conditions that are very difficult to obtain in the laboratory. A good
example of this is the case of waves and a current at an angle. This
condition cannot easily be realised in an ordinary wave flume.

Physical data

129. The wave-current models presented here should, in the limit of a
vanishingly small current, be able to predict the velocity profile under a
pure wave motion. Therefore, three sets of data from wave boundary layers

are chosen for comparison. They are the data sets from Tests 1 and 2 of
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Jonsson and Carlsen (1976)—named JC1 and JC2 for convenience—and the
data set from Van Doorn (1981) which is referred to as VDW.

130. Jonsson and Carlsen measured velocities in the turbulent
oscillatory flow near a fixed bed with two-dimensional artificial roughness
elements. The experiments were performed in an oscillating water tunnel,
and the velocities were measured at various heights above a trough in the
bottom roughness hy a micro-propeller. The measurements were phase
averaged over many cycles and then smoothed in both =z and t . The
details of the smoothing were not given.

131. The experimental parameters needed to run the theoretical models
are given in Table 1. Jonsson and Carlsen calculated values of k; , the
equivalent Nikuradse roughness, and A, the displacement of the theoretical
bed below the top of the roughness elements. However, the values given in
Table 1 are those obtained by Grant (1977), who used a more systematic
analysis and obtained values that scaled more consistently with the
dimensions of the roughness elements. The vertical profile of the phase of
the velocity with respect to the free-stream velocity can also be obtained

from their measurements.

Table 1

Experimenta)l Parameters for the Data Sets

from a Pure Wave Motion

uh w kn
Data Set cm/s s ! cm An/kn
JC1 211.0 0.749 1.59 177.2
JC2 153.0 0.873 7.50 23.4
VDW 26.5 3.142 2.10 4.1
DVWOS 50.0 0.785 15.0 4.2
DVW10 100.0 0.785 15.0 8.5
DVW15 150.0 0.785 15.0 12.7
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132. Van Doorn obtained measurements in the boundary layer of a wave
flume with two-dimensional artificial roughness elements. Velocities were
measured at various heights above a crest and above a trough of the
roughness using a laser-doppler anemometer. The value of the eguivalent
roughness was determined by measuring the velocity profile of a pure
current flow and finding the intercept on the 2z axis from a semi-
logarithmic plot of the velocity with height. The theoretical bed was set
at the bottom of the roughness elements. The relative phase of the wave
velocity was also reported. The relevant experimental parameters are given
in Table 1.

133. For the case of waves and currents, the two data sets from Bakker
ard Van Doorn (1978) have been selected. These experiments were performed
in the wave flume described in the preceding paragraph. A steady current
was established in the flume by means of a recirculating pump. The inlet
and outlet for the steady flow were 24 m apart. Waves were generated at
one end by a flat wave board oscillating horizontally and absorbed by a
wave damper at the other end. The wave period used was 2.0 sec and the
water depth 0.3 m.

134. For the experiments with waves and a current, the bottom roughness
elements (2 mm high at 15-mm centers) were applied over a distance of 15 m
from the inlet. Velocities were measured using a laser-doppler anemometer
above a crest and above a trough of the bottom roughness. The water
surface elevation was measured using a resistance-type wave gage.

135. The measurements were analyzed using the waves from each wave
train that were present after the start-up transients had passed and before
the first reflected wave returned. Three wave trains were analyzed for
pump flow rates corresponding to average velocities of 10 cm/sec and
20 cm/sec in the absence of waves. The time-averaged velocities above a
trough were reported for the two flow rates. These sets will be referred
to as BVD10 and BVD20, respectively. The experimental parameters are given
in Table 2.

136. The pump flow rates in these experiments cannot be used as an
indicator of the average flow velocity in the presence of waves. One
reason is that the experimental current velocity profiles plotted in
Figure 5 of the next section show that the velocity increases

logarithmically with height above the bottom only up to a certain level,
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Table 2

Experimental Parameters for the Data Sets

from a Combined Waves and Current Motion

up W kn Pow

Data Set cm/s st cm AhL/kn deg Current Specification
BVD10O 25.7 3.142 2.1 3.9 0 uc = 8.2 cm/s at z = 4.6 cm
BVD20 24.3 3.142 2.1 3.7 0 uc = 22.4 cm/s at z = 5.9 cm
DV0500 50.0 0.785 15.0 4.2 0] T¢ = 3.5 Pa

DV1000 100.0 0.785 15.0 8.5 0 T¢ = 3.5 Pa

DV1045 100.0 0.785 15.0 8.5 45 Te¢ = 3.5 Pa

DV1090 100.0 0.785 15.0 8.5 90 Te = 3.5 Pa

pv1s00 150.0 0.785 15.0 12.7 0 T¢ = 3.5 Pa

after which it remains nearly constant. This indicates that the current

profile at the measuring station was not fully developed; i.e., the effect
of the bottom had not penetrated all the way to the surface by the time the
flow reached the measuring station. Therefore, reguring the depth-averaged
velocity from the theoretical profiles to equal the pump flow rates would
result in an error as the theory assumes fully developed flow.

137. Another reason is that the wave-induced mass transport will cause
a return flow in the flume that opposes the current. This is shown in the
plot of current velocities with and without waves for the same pump flow
rate given in Bakker and Van Doorn (1978). For these reasong, it was
decided to select a data point from near the top of the logarithmic region
for each set and require the theoretical profiles tec pass through that
point; i.e., the current was specified as a point value rather than as a
depth-averaged value.

Numerical data

138. The results for wave and wave-current flows presented in Davies,
Soulsby, and King (1988) obtained from the model described in the preceding
section are selected for comparison. The case studies of Davies, Soulsby,
and King were performed for an assumed water depth of 10 m and a bottom of

equivalent Nikuradse roughness kp, = 15 cm . The wave period was 8 sec and
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the wave motion was specified by the value of the free stream velocity up .
The current was specified by the mean shear stress T¢ .

139. The model was run for one case of waves alone with up = 1.0 m/sec
and one case of a pure current with 7¢ = 3.5 Pa which are referred to as
DVW10 and DVC, respectively. Runs with waves and the current in the same
direction were carried out with 7 = 3.5 Pa and upy = 0.5, 1.0, and
1.5 m/sec (referred to as DVO500, DV1000, and DV1500, respectively).
Finally, two runs were performed with 7¢ = 3.5 Pa and up = 1.0 m/sec
with the angle between the wave direction and the mean shear stress at 45
and 90 deg (referred to as DV1045 and DV1090). The parameters needed to
run the theoretical models are given in Tables 1 and 2.

140. The results are presented as profiles of the instantaneous
velocity for different values of the phase of the free-sticam velccity for
the cases DVW10 and DV1000 and as profiles of the time-averaged velocity
for all five wave-current cases and the case of a pure current. The
maximum bed shear stresses and phase leads are also tabulated. The maximum
wave bottom shear stress and phase lead for two more cases of waves alone
were also tabulated. These had up = 0.5 and ..5 m/sec and are referred to

as DVWO5 and DVW15, respectively.

Comparison of Model Results with Experimental Data

Waves alone

141. For the case of waves alone, the wave part of ths GM model can be
used with uycw replaced everywhere by uywy . The SM model has the
identical solution for a pure wave motion. Since the TS model does not
have a separable wave component, it will not be discussed here. The
solution for the wave velocity from the GM model is given by Equation 67.
The phase can be found from the argument of the term in the square brackets
in that equation.

142. The comparisons of the predicted wave velocity and phase with the
three data sets from the physical experiments are shown in Figures 1, 2,
ard 3 while the comparison with the numerical data set DVW10 is shown in
Figure 4. It should be noted that the problem of a pure wave motion does
not involve the free parameter ¥

143. The agreement with all these data sets is quite poor with the

chief drawback being the overprediction of the boundary layer and the
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Figure 1.

and Carlsen (1976) Test 1 with the results of the GM model
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and Carlsen (1976) Test 2 with the results of the GM model
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underprediction of the "overshoot” velocity near the top of the boundary
layer. The phase is also poorly predicted particularly near the bottom.
The prediction of the near bottom velocity is better with the exception of
the set VDW. This set is obtained from an experiment with a very rough
bottom and may be outside the range of validity of the present theory. It
also shows clearly that the velocity near the roughness elements is not
uniform but depends on where the measurement is made.

144. The main problems mentioned can be attributed to the use of a
linearly varying eddy viscosity for the whole depth. As shown in Lundgren
(1972), experimental evidence suggests an exponential decrease after a
certain height. This model leads to too large a value of the eddy
viscosity near the top of the boundary layer. Since the boundary layer
thickness scales with the level of eddy viscosity, this continuous increase
leads to overprediction of the boundary layer thickness. Furthermore, the
increased eddy viscosity leads to smaller velocity gradients for the same
shear stress. This results in the theoretical profile being much smoother
than the experimental profiles as shown in the comparisons.

145. The values of bottom shear stress and phase from Davies, Soulsby,
and King are compared with the values from the GM model in Table 3. Shear

stress is overpredicted by about 20 percent while the phase lead is well

Table 3

Calculated Maximum Wave Shear Stresses and Phase Leads

for the Conditions of Davies, Soulsby, and King (1988)

from the GM Model Compared with the Results

Given by Davies, Soulsby, and King (1988)

Tw (Pa) Phase Lead (deq)

Davies GM Davies GM
Data Set et al. Model et al. Model
DVWWO05 8.1 9.7 28.2 29.6
DVW10 23.5 27.8 26.4 27.5
DVW15 44.3 52.0 25.2 26.3
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predicted. The overprediction of the shear stress could be due to the eddy
viscosity being too high.

Waves and a current

146. The current velocity profile for the conditions corresponding to
each data set was calculated using each model. The results for each model
are presented separately.

147. GM model. The comparisons of the results from the GM model and
the data are shown in Figures 5, 6, and 7. Two values of the parameter 7
in Equation 72 have been selected; 7 = 1.5 1is in the middle of the range
suggested by Grant and Madsen (1986) wihile 7 = 1.0 appears to give a
better fit overall. Figure 7 shows the results for the case of waves and
currents at an angle. These results will be shown for the GM model only
because it is the only one that made allowance for any angle between the
two.

148. The data set BVD20 and all the sets from Davies, Soulsby, and King
show clearly the existence of two logarithmic regions with a transition
region. This vindicates the reasoning behind the GM model. The set BVD10
does not show the lower region. The discontinuity in the eddy viscosity
results in a kink in the velocity profile at the edge of the boundary layer
while the data show a smooth transition.

149. The current for the sets BVD10 and BVD20 is specified by a
velocity at a certain height; i.e., the program is run until the profile
passes through this point. Since the GM model and the data sets exhibit a
logarithmic velocity profile outside the boundary layer, this specification
means that it is difficult to decide on the "best fit" value of 7 for
these sets. This is seen in Figure 5. In the case of the Davies, Soulsby,
and Kirq profiles the current is specified by the mean shear stress and
different values of ) cause significant variation in the velocity
profiles as seen in Figure 6.

150. However, as shown in these figures, different values of 7 will
apparently provide a good fit to the data for each of the three values of
uh. A value of 1.5 seems gcod for the set DV1500 while 7 = 1.0 fits
DV1000 well and an even lower value is indicated for the set DV0O500. This
is a shortcoming of the model and is a result of the assumed vertical

structure of the eddy viscosity being oversimplified.
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Table 4

Calculated Maximum Bottom Shear Stress for the Conditions of Davies,

Soulsby, and King (1988) from the GM, SM, and TS Models Compared

with the Results of Davies, Soulsby, and King (1988)

Maximum Shear Stress Ty (Pa)

Davies GM SM TS
Data Set et al. Model Model Model
DVOos5nN0 13.0 14.7 20.6 14.7
DV1000 28.0 33.1 44.8 33.5
DVv1045 27.0 31.7 - -
DV1090 24.2 28.2 -- -
DV1500 48.9 57.3 74.6 55.2

151. Another problem is that a change in the current profile with
change in the angle between the wave and the current is hardly brought out
by the MG model as evidenced by the results presented in Figure 7.

152. The results for the maximum bottom shear stress of the data cets
from Davies, Soulsby, and King are compared in Table 4 with the results
from the three models. Since the value of 7 does not come into the wave
problem the maximum shear stress does not depend on 7Y when the current
shear stress is specified, as is the case here. The table shows that the
GM model overpredicts the shear stresses by about Z0 percent as in the case
with waves alone.

153. The current shear stress in the data sets BVD10 and BVD20 is not
given but is instead determined as part of the solution. Since the
solution for the GM model is logarithmic in the upper layer and this model
fits the data well, the predicted current shear stress can be assumed to be
close to the actual value. The predicted wave and current shear stresses
from the various models are compared in Table 5, which shows that the
results from the GM model for the shear stresses are fairly insensitive to
the value of 7 . This is in agreement with what Grant (1977) found for the
original GM model.

154. SM model. The results from the SM model are presented along with

the experimental data in Figures 8 and 9. Results are shown for two values
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Table 5

Predicted Maximum and Current Shear Stresses from the GM, SM, and TS Models

for Conditions Corresponding to the Bakker and Van Doorn Experiments

Predicted Current Shear Stress (Pa) Predicted Maximum Shear Stress (Pa)
GM SM TS GM SM TS
Model Model Model Model Model Model
Data
Set =10 7=15 =01 17=1.0 7=1.0 7=1.5 1=0.1 17=1.0

BVD1O 0.18 0.22 0.18 0.53 0.44 2.9 3.0 3.8 4.8 3.3
BVD20 0.80 0.89 0.81 1.80 1.33 3.6 3.7 5.1 6.8 4.3

of the parameter 7 - 7 = 1.0 as originally proposed by Smith (1977) and

7 = 0.1 which is the value that appears to give a good fit to the data in
general. The use of 7 = 0.1 leads to a significant improvement in the
profiles. However, when this value is used, the level of the boundary
layer (f as defined in Equation 78) is set very near or below the level of
the physical roughness (2 mm for the Bakker and Van Doorn data and 5 cm for
the Davies, Soulsby, and King data).

155. The reason for this is that inside the wave boundary layer the
combined shear velocity is found by adding the wave and current shear
velocities instead of defining it by means of the combined shear stress as
done in GM model. This results in a combined shear velocity that is too
high causing excessive retardation of the current within the boundary
layer. Therefore, a good fit is obtained when the boundary layer is kept
very small. Another drawback of this model is that the profile outside the
boundary layer is not exactly logarithmic resulting in a poor fit to the
data.

156. It is seen from Figure 9 that, as in the GM model, different
values of 7 will give a good fit to each of the three profiles. This is a
furtter indication that a two-layer model is insufficient to represent the
velocity profile.

157. The maximum shear stresses and phase leads predicted by the model
for the Davies, Soulsby, and King conditions are also given in Table 4. As

before, these values are not influenced by the value of 7 when the current
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shear stress is given. The table shows that the wave shear stresses are
overpredicted by about 50 percent. This is due to the eddy viscosity being
too large in the wave problem. This is further evidence that the
definition of the combined shear velocity in this model is incorrect.

158. As shown in Table 5, the shear stresses predicted for the data
sets BVD1l0 and BVD20 are quite different for the two values of 7 wused.

The current shear stresses obtained with 7Y = 0.1 are close to those found
from the GM model, but the corresponding wave shear stresses are
overpredicted.

159. Therefore, it can be concluded that the SM model does not perform
as well as the GM model for any of the data sets regardless of the value
chosen for 9 . The selected eddy viscosity inside the boundary layer is
too high while the form of the eddy viscosity in the upper layer is
incorrect.

160. TS model. The results of the TS model are compared with the data
in Figures 10 and 11. The model does not predict any data set well because
the wave boundary layer thickness is greatly overpredicted in most of the
cases considered. However, even when the boundary layer height is better
calculated, as in the set DV1500, the assumption of a constant eddy
viscosity in the upper layer leads to an incorrect shape of the profile
there as shown in Figure 11.

161. The calculated maximum shear stresses corresponding to the Davies
Soulsby, and King conditions in Table 4 are very close to the values
obtained from the GM model. This is not surprising as the wave problem
formulations in the two models are nearly identical. The wave shear
stresses in Table 5 are also almost the same as from the GM model, but the
current shear stress is much larger.

162. The reason for the poor performance of this model appears to be
the method used to define d , the thickness of the wave boundary layer in a
wave-current flow. The definition in terms of the integral in Equaticn 81
is an attempt to relate d to the displacement thickness of the boundary

layer. For a pure current with a logarithmic velocity profile, the

D

evalu - .ion of this integral yields d = 0.1z} while for the current prof
derived for this model d = 0.133z} 1is obtained. In the limit of a pure
wave motion, d = 0.1¢ 1s obtained with ¢ defined by Equation 62 with

Uyw used i1n place of u,cy
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186. The boundary conditions are the no-slip condition at =z = 2zg =
kn/30 , and the approach to the free stream velocity as z < ® . Since ud

is defined in Equation 43, the no-slip condition becomes
ud = -1 at ( = (o= zo/0 (169)
which, for (0 < @ , by use of Equation 103 yields
Alker (2v/Co) + i kei(2y{o)] + B(ber(2y/{o) + i bei(2y/{g)] = -1 (110)
187. From the condition at infinity it is obtained that
ug ~+ 0 as (- o (111)

which is satisfied only if F , in Equation 108, is zero since the Kelvin

functions ber and bei become exponentially large as their arguments

approach infinity (Abramowitz and Stegun 1972, Chapter 9). Thus,
F =20 (112)
188. The remaining conditions necessary to determine the constants are

matching conditions applied at the inner and outer boundaries of the
intermediate region, i.e., at C = @ and C = a/€ , respectively. The
matching conditions require continuity of velocity and velocity gradient
(shear stress) as the boundaries are approached from above and below.

189. Matching of velocities is readily accomplished by use of Equations

103 and 106 and Equations 106 and 108 at ( = a and ( = a/¢

14

respectively, and results in

Afker(2y/a) + i kei(2y/a)] + Blber(2y/a) + i bei(2ya)]

= Ce"/i_a + De—‘/i_a

(113)

and

R N T T kei(2va/e)) (114)
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190. Matching of velocity gradients at ( = @ is obtained from

Equations 103 and 106 and results in

Alker’ (2y/a) + i kei’(2ya)] + B[ber’ (2ya) + i bei’ (2/a)]

= cﬁe‘/i_a - D\/i_e_m (115)

while matching of velocity gradients at ( = @/€¢ , obtained from

differentiation of Equations 106 and 108, yields

Cﬁeﬁb_/f - D\/i—e_ﬂ/f = E(ker’ (2ya/e) + i kei’ (2ya/€)) \116)

191. In Equations 115 and 116 the primes denote differentiation with
respect to the argument of the function. Solution of the five linear
equations, Equations 110, 113, 114, 115, and 116, for the five arbitrary
constants constitutes the solution of the wave problem. Inspection of the
equations involved reveals that the parameters to be specified in order to

obtain a solution are

0 kn/30 Uxgc
= = —— a and € = 117
CO % :‘CU*(jw/U ! U*('w ( )

192. These three parameters are significant in determining the nature
of the solution: (0 expresses the effect of bottom roughness since it
depends on the equivalent Nikuradse sand grain roughness, kpn ; @
expresses the fraction of the wave boundary layer thickness over which the
eddy viscosity is assumed to vary linearly; and ¢ expresses the relative
magnitude of current and combined wave-current shear velocities.

193. In a physical application of the theoretical results presented

above, it is reasonable to assume a scenario in which k; , the bottom

roughness, u} and ¢ , the waves, and uy¢ = y7¢/P , the average bottom
shear stress, are known or specified. This leaves @ and uycw to be
determined before a solution to the wave problem can be obtained. As

alluded to previously, the determination of uycw calls for a closure

hypothesis, while @ should be regar'led as a free (fitting) parameter.
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Closure of Wave Problem and Wave Friction Factor

194. 1In the present analysis, the closure hypothesis is chosen by
specifying that the shear velocity, wuycw , scaling the eddy viscosity in
the wave boundary layer, corresponds to the maximum combined wave-current

bottom shear stress, 7Tp , i.e.,

U*cw = VTm/p (118)

195. The relation between uycw and uyy can be found from Equation
58 to be
1
ugew = VTm/pP = uaw(1 + 2p2cosde + pt)? (119)

with g defined in Equation 59. From the definitions of the parameters
expressing the relative magnitudes of shear velocities, Equations 101 and

59, a relationship between € and [
-1
€ = (1 + 2p%cosfew + pf) * (120)

is obtained.

196. Thus, the parameter € , necessary to specify in order to obtain a
solution to the wave problem, may alternatively be thought of as expressing
the relative importance of waves and currents, [ , and the direction of
the current relative to the waves, ¢cw

197. While the closure hypothesis adopted here defines u,¢y and
thereforn the eddy viscosity variation, it is not readily seen how its
value is to be determined from knowledge of bottom roughness, kp , and wave
characteristics, wup and ¢ , other than by trial and error, i.e., assume a
value of uycw , thereby specifying the necessary parameters given by
Equation 117 with @ assumed known, and then use the definition of the
maximum wave bottom shear stress in conjunction with Equation 119 to see if
the assumed value of u,cy was correct. This procedure can be facilitated
by the introduction of a wave friction factor.

198. Jonsson (1966) defined a friction factor for pure wave motion fy

by
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Tw = $pfwup? (121)

199. Here fy represents the entire interaction of the wave motion
specified by up (upb = ux) with the bottom. For fully rough turbulent

flow, it was found that

fw = f[éﬁ] (122)
kn

where

ﬂ
W (123)

is the excursion amplitude and kp the equivalent Nikuradse roughness.
Thus Ap/kn 1is a relative roughness parameter.
200. In analogy with Equation 121, a wave friction factor for the wave-

current problem can be defined as
Tw = 40fwcup? (124)

where the subscript wc reflects the fact that the increase in bottom
turbulence and thereby bottom wave shear stress due to the current is taken
into account.

201. Introducing this definition of the wave friction factor along with

Equation 119 in the definition of (0 as given by Equation 117 one obtains

Co = Ktn/uiw ) kn/30 S ngK 1;:_,,_/ 1 (125)
xew Kugw(1 + 2plcosde + p4)*/u b Ve
in which
Ay’ = %h(l + 2ulcosfew + ﬂ4)% = Ap(1l + 24%cosfew + u4)% (126)
and
fwe’ = fwc(l + 2plcosdew + #4)-% (127)

202. Thus, specifying a value of (¢ is identical to specifying a

reiationship between the modified relative roughness, kn/AL’ , and the
modified wave friction factor, fw¢
203. An alternative expression to Equation 124 for the maximum wave

bottom shear stress may be obtained directly from the definition
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Vt'ub'ggg } (128)

in which the limit =z - "0" may be strictly enforced, i.e., z + 0, or
loosely enforced by evaluating the expression at =z = z3 , the location
where uy = 0 . 1In either case, it is expected that the definition of the
bottom shear stress falls within the near-bottom region, z £ ab , where ud
is given by Equation 108 and Vi by the first expression in Equation 100.
This shows that very rough flows (i.e., low Ap/kpy) are not considered. For
these flows a model such as that of Kajiura (1968) or Christoffersen and
Jonsson (1985) would be appropriate.

204. Introducing the appropriate expressions for V¢ and ud in

Equation 128 and expressing uUgcw as given by Equation 119 results in

4
120 = Kugew Lim [‘( od

1
al ]= Kugw(l + 2p2cosfey + p4) ¥ lim [

gl

ub C_'"O" C_’nou d(zﬂ)
1
= Kugw(l + 2f2cosdew + p4)* lim (J{|a(ker’ (2/()
C_’“O”
+ i kei’ (2y/{)] + Bber’ (2y{) + i bei’ (2V() 1} (129)

205. When uyw = yTw/p is expressed in terms >f the wave friction
factor defined by Equation 124, this expression may be regarded as an

equation for the modified wave friction factor:

VEwe’ = V2K lim (JC|A(ker’ (2y/{) + i kei’ (2V()]

o

+ Blker’ (2y0) + i xei’ (2V/() 1]y (130)

206. If the limiting process in Equation 130 is strictly enforced,
1.e., C -+ 0 , the asymptotic expansions for Kelvin functions given by
Abramowitz and Stegun (1972, Chapter 9) show that only the term involving

ker’ survives the lim -ing process, since

lim{ker’ (2y() = - — (131)
(=0 2V/¢
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while the remaining terms behave as JZlnC or JZ and therefore vanish as
(- o0.

207. For the limit ( - 0 Equation 130 therefore becomes

fwe' = K J'—;L for limit ( =0 (132)
2

while interpreting the limiting process ( - "0" in Equation 130 as ( = <0

results in

VEwe' = V26dCo|arker’ (2/0) + i kei’ (2y/(0))

+ B(ber’ (2y/Cp) + i bei’ (2v/C0) 1| for limit ( = (g (133)

208. The two values obtained from Equations 132 and 133 are practically
identical for small values of Cg (large Ap/kh). For larger values of
(0 , use of Equation 132 leads to values of t.ae phase lead of the bottom
shear stress over the free stream velocity much greater than 45°. For
turbulent flow, this value is expected to be less than 45°, which is the
resulc for laminar flow. Also since (p is the level at which the velocity
is formally set to zero, enforcing the limit in Equation 128 does not seem
consistent. For these reasons Equation 128 is evaluated at ( = (g for the
rest of this study.

209. For AL'/kp =1 and € = 0.1 the value of fy:' obtained from
Equations 132 and 133 are 0.268 and 0.159, respectively. For AL’ /kn =
10.0 , they are 0.056 and 0.063 while for Ap' /knp = 100 , they are 0.022

and 0.0215, respectively.

Modified Wave Friction Factor Diagram

210. Equation 133 can be used to derive a modified wave friction factor
diagram in analogy to the diagrams for pure wave motion derived
theoretically by Kajiura (1968) and semi-empirically by Jonsson (1976).

211. This is done by solving Equations 110, 113, 114, 115, and 116 for

assumed values of CO , @ , and € . Introducing the calculated values of
A and B into Equation 133 results in a value of f¢y while the
corresponding value of A} /k, 1is found from Equation 126. Repeating this
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process for various values of (o with @ and ¢ kept constant results in
a modified wave friction factor diagram for that particular combination of

@ and € . This shows that for a given @ , the wave friction factor fy¢

is now a function of three variables, Ap/ky , f , and cos¢cw .
212. Figure 12 presents an example of a modified wave friction factor
diagram for several values of ¢ with @ = 4 . The use of the modified

friction factor and relative roughness as defined by Equations 126 and 127
effectively reduces the relationship to a single curve independent of the
value of ¢ . Some dependency on € does become apparent for very small
values of the relative roughness as shown in the expanded figure for small
Ab' /kn -

213. The advantages of using the modified friction factor diagram are
well brought out in Figure 13, which shows the relationship between the
actual friction factor fyw: and the actual relative roughness An/ky for a
range of ¢ for a co-directional wave current system (¢cw = 0). These
figures show that fy: depends strongly on € , unlike in the modified
fraction factor diagrams. The collapse of the different lines onto a
single curve will make the use of the diagram much simpler.

214. The parameter @& 1is treated so far as a free parameter to be
determined after comparison with experimental data. Figure 14 shows the
wave friction factor for a pure wave motion (fwe' = fwe = fw) against the
relative roughness for different values of @ . These show that the wave
friction factor is essentially independent of a for values of the
relative roughness greater than 20 or so. Some dependency on @ is present
for smaller values of the relative roughness as shown in the expansion for

small Al/knp .

215. Therefore given uy , ¢ , kpy , and ¢cw and assuming a value of
u o, fwe’ can be found from the graph. Then fy: can be found from
Equation 127 and uyyw from Equation 124. This makes the iterative solution

easier to carry out.

Current Prolklem

216. Having solved the wave problem, the problem of determining the
current velocity profile remains. This problem is governed by Equation 53

with V; given by Equation 100. Proceeding with the solution from the
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near-bottom region and up and invoking boundary and matching conditions in
the process, the solution for the current is obtained.
217. For the near-bottom region, z < ad , within which the eddy

viscosity varies linearly, the governing equation for the current becomes

duc 2
Kuxcwzg = = Uxkc (134)
for which the solution, satisfying the no-slip condition at 2z = 2z =
kn/3o ’ is
ue = Yxc Uxc | 2 (135)
U*CW K Z)

218. For the intermediate region, @0 < z < af/e , the eddy viscosity

is constant and the governing equation is

dUC
Kugew0—€ = uge (136)

for which the solution is

e urefz o
ug Geem K [EE 1 + ln20 (137)

The requirement of matching current velocity at 2z = a6 is used to
determine the constant of integration obtained from integration of Equation
136.

219. In the outer region, 1z > ad/€ , the eddy viscosity is again

linear and results in a logarithmic velocity profile given by

C o= e z
ue P [IH[W] + C] (138)

where 2z for convenience has been nondimensionalized by the level afé/¢ at
which the solution must match the solution given by Equation 137.
220. Performing this matching results in the determination of the

constant C and a current velocity in the outer region given by
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.- Use 2 uge [, 80 _
Uce P [ln[m] + 1 + U*cw[lnzo 1}] (139)

221. To avoid any misinterpretation of this result, it should be
emphasized that Equation 139, although formally valid in the outer region,
z 2 05/6 , 1s limited by the assumption of the validity of "the law of the
wall.” Thus, Equation 139 cannot be extended beyond a fraction of the
current boundary layer thickness.

222. In the limit of a small current, i.e., uyc € uzcw . the last term
inside the bracket of Equation 139 will be insignificant, and the velocity

profile for large 2z will be given by

-t 14 z 40
Uc = X ln['—b'——‘a /Ef] (1 )
223. This equation is the same as that for a pure current, as in

Equation 24, but with 2zy replaced by the value zo’ = 05/e6 . In other

words, the bottom roughness seen by the current is no longer given by zg
but by 2z¢° . This is the apparent roughness discussed by Grant and Madsen
(1979). It is scaled by 0 , the wave boundary layer thickness, instead of
by kp , the equivalent roughness parameter. For a strong wave motion, )
may b2 much larger than kp , leading to an apparent roughness that is much
larger than what would be predicted from a knowledge of the bottom
conditions.

224. In the limit of a very weak wave motion ¢ = uUyxe/Ugew = 1
therefore, Equation 139 reduces to Equation 24, which gives the profile for

a pure current.

Comparison with Experimental Data

225. The results of the model developed in the preceding section will
be compared with the same experimental data used in Part III.
Waves alone

226. In the GM model, the problem of a pure wave motion did not involve
any free model parameter. For the present model, however, the parameter @
can be varied, and the most suitable value chosen after comparison with the

data. Figures 15, 16, and 17 present the model results using @ = 0.15

’
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@ =0.3, and a = 0.% compared with the three data sets from the physical
experiments. Figure 18 presents the comparison of the instantaneous wave
velocity profiles of Davies, Soulsby, and King (1988) with the predicted
profiles using @ = 0.5

227. As shown in the figures, the predictions afforded by the present
model are closer to the data than are those of the GM model in Figures 1, 2,
3, and 4. The boundary layer thickness, the level of the overshoot, and
the magnitude of the overshoot are better represented. Figures 15, 16, and
17 show that the results with @ = 0.15 are the best with regard to these
phenomena. This agrees with the results of Trowbridge and Madsen (1984a
and 1984b).

228. However, when considering the flow close to the bottom, Figures 15
and 16 show thit thoe profiles with @ = 0.5 and @ = 0.3 show
significartly better agreement with the data than the profiles with
@ = 0.15 . Figure 18 shows a similar result with @ = 0.5 giving good
agreement near the bottom, particularly when the velocity is a maximum, but
performing less well near the top of the boundary layer. On the other
hand, it is seen in Figure 17 that only the profile with a = 0.15 fits the
data near the bottom while none of the prof.les does well towards the top
of the boundary layer.

229. The maximum wave shear strcsses and phase leads corresponding to
the Davies, Soulsby, and King conditions for these values of @ along with
the results from the GM model are presented in Table 6. Considering the
shear stress, it is seen that a value of @ between 0.15 and 0.3 is
indicated to fit the data. However, for these low values of @ , the phase
lead is too large with the value for the set DVWO5 with a4 = 0.15 being
almost as much as that for laminar flow. The phase profiles from the
physical data sets in Figures 15, 1€, and 17 indicate that @ = 0.3 1is the
best value.

230. The above discussion shows that the indications from the
comparisons for a pure wave motion regarding the optimum value of a4 are
unclear. @ = 0.5 does well for the near-bottom region while a = 0.15
does best for the top of the boundary layer.

Waves and currents

23i. The comperison of the predicted current velocity proiiles wici. *he

data 1s shown in Figures 19 and 20 using the values 2 = C.15 and 0.5 . It
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Table 6

Calculated Maximum Wave Shear Stress and Phase Lead for the Conditions of

Davies, Soulsby, and King (1988) from the GM and the Improved Models

Compared with the Results from Davies, Soulsby, and King (1988)

Wwave Shear Stress (Pa) Phase Lead (deg)

Improved Model Improved Model

Data Davies GM Davies GM
S=2t et al. Model a=0.15 a=0.3 a=0.5 et al. Model =0.15 2=0.3 @=0.5

DVWO5S 8.1 9.7 6.0 8.9 9.9 28.2 29.6 44.8 39.2 34.4
DVW10 23.5 27.8 21.0 27.2 28.9 26.4 27.5 42.0 35.2 31.0
DVW15 44.3 52.0 42.3 51.9 54.1 25.2 26.3 37.8 33.1 29.2

was found that @& = 0.5 resulted in a very good fit to all the data sets.
It is particularly encouraging that a single value of @ fits all three
current profiles in Figure 20, which were for three different values of
up . This is an improvement over the GM model for which, as shown in
Figure 6, different values of Y are required to give a good fit to each
profile.

232. The maximum shear zctresses predicted for the Davies, Soulsby, and
King conditions using the two values of @ are presented in Table 7 along
with the results from the GM model. It is seen that a = 0.5 gives values
that are very close to those from the GM model while the use of @ = 0.15
results in a lower shear stress. This is expected because as shown in the
previous section, @ = 0.15 gives rise to lower wave shear stresses.

233. The maximum and current shear stresses predicted for the Bakker
and Van Doorn conditions are given in Table 8 for the two values of a
along with the results from the GM model using the "best fit"” value of
7T =1.0 . Use of & = 0.15 leads to current shear stresses that are about
50 percent less than the values obtained with @ = 0.5 . The effect of this
dec~ease on the current profiles can be seen in Figure 19, where the slope
of the profile in the outer region does not match the data.

234. However, as shown in Figure 21, the model is unable to fully
represent the change in the profile caused by the change in {¢cw —the

angle between the wave and current. It is seen, however, that the model
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Calculated

Table 7

Maximum Bottom Shear Stress for the

Conditions

of Davies,

Soulsby, and King (1988)

Maximum Shear Stress (Pa)

Improved Model

Data Davies GM

Set et al. Model a=0.15 a=0.5
DvV0500 13.0 14.7 12.0 14.7
DV1000 28.0 33.1 26.0 34.0
DV1045 27.0 31.7 24.6 32.6
DV1090 24.2 28.2 21.0 29.1
DV1500 48.9 57.3 46.7 59.5

Table 8

Calculated Maximum and Current Shear Stresses for the Conditions of

Bakker and Van Doorn from the Improved Model and the GM Model

Current Shear Stress (Pa) Maximum Shear Stress (Pa)
CM GM
Data Model Improved Model Model Improved Model
Set ¥=1.0 a=0.15 a=0.5 1=1.0 2=0.15 a=0.5
BVD10 0.18 0.093 0.19 2.9 1.7 3.0
BVD20 0.80 0.49 0.74 3.6 2.3 3.5

does perform marginally better than the GM mcdel in this respect. For

few = 90°

in the outer region increases from 2.0 to

example, and

the difference in velocity between the case with
¢cw =0

This,

the case with

2.5 cm/sec. however, is still significantly less than the value of

8.5 cm/sec shown by the results of Davies, Soulsby, and King (1988).

Summary

235. All the comparisons with the experimental data show that the model
is an improvement upon the GM model. The results obtained for a pure wave
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motion reproduce the features of the experimental data better than the GM
model. The generated current velocity profiles have a smooth transition
between the wave boundary layer and the current boundary layer. The most
important advance from the GM model is the fact that a single value of @
fits all the data for current profiles in the case of co-directional waves
and currents well.

236. However, the results for the comparison with the wave data suggest
that a value of @ = 0.3 or slightly less is the best for the wave problem
while the comparisons with the current profiles strongly indicate @ = 0.5
as the best value. The use of a4 = 0.5 does not result in very drastic
changes to the values obtained in the wave problem and actually does better
in predicting the near-bottom velocity in two data sets. The proportional
change in the value of the overshoot is not very large when @ = 0.5 is
used in place of a = 0.15 . On the other hand, use of a smaller value of &
results in significant changes to the current velocity and shear stress as
shown previously.

237. Bearing in mind that the near-bottom wave velocity is more
important for application to sediment transport, it is proposed that
@ = 0.5 be selected as the value of the free parameter in this model. This
value is expected to give good predictions for the current profiles when
¢cw = 0 while not being very much in error for the wave velocity. There
is, however, still a deficiency in the model’s representation of waves and

currents at an angle.
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PART V: TIME-VARYING EDDY VISCOSITY MODEL

238. While the time-invariant eddy viscosity model developed in Part 1V
gave excellent results for a current velocity profile with waves in the
same direction, it could not adequately represent the effect of a change in
the angle between the waves and the current as shown in the data from
Davies, Soulsby, and King (1988). The results of Davies, Soulsby, and King
also show that the direction of the mean velocity when 0 < ¢cw < 90° is
close to that of the mean shear stress only in the outer region, while the
mean velocity closer to the bottom is deflected by the waves. These
features are also apparent in the results of Van Kesteren and Bakker
(1984).

239. The inability of the model to represent these features is a result
of the simple formulation used. It was shown in Part II that once the eddy
viscosity is assumed time-invariant, the linearized boundary layer equation
can be separated into a wave and a current problem. Once this separation
is accomplished, it can be seen that the wave velocity and the current
velocity always lie along the direction of the Tree stream velocity and the
mean shear stress, respectively, regardless of the sophistication of the
eddy viscosity model used. This means that simply using a more elaborate
time-invariant eddy viscosity model will not reproduce the phenomena
discussed above. Instead it seems that an eddy viscosity that varies with
time should be considered. This has been done in Trowbridge and Madsen
(1984a, b) for a pure wave boundary layer, and they obtain features such as
a third harmonic velocity in the boundary layer that are present in
physical experiments but not obtainable if a time-invariant eddy viscosity
is assumed.

240. Therefore in this Part a time-varying eddy viscosity model will be
developed that has a form similar to that used in Trowbridge and Madsen
(1984a, b). The assumption of a weak current is used to obtain tractable
approximate governing equations for the waves and for the current. These

are then solved, and the results compared with the experimental data.
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Derivation of Approximate Equations for Waves and Current

241. The governing equation is the linearized boundary layer equation,

derived in Part II, and identical to the one used in Part IV

g‘t—‘ = - %Vp + g;[”tg%] (141)

in which the shear stress (Reynolds stress) on horizontal planes has been

expressed through the concept of a turbulent eddy viscosity

t ad
2= ng (142)

242. While the separation of the governing equation, Equation 141, for
the combined wave and current flow into its time-varying (wave) and time-
invariant (current) components was readily achieved in Part II, due to Vg
being time~invariant, this separation is far more involved here since Vg
is considered a function of time.

243. To perform the separation the variables 4 = {u,v} , p , and Vg
are expressed in terms of their time-dependent and time-independent
contributions, denoted by tilde (ﬁ) and overbar ( ), respectively.

Furthermore, since the wave motion is assumed simple periodic, the time-

dependent contribution is split up into its even and odd harmonics, denoted

by subscripts e , (~)e , and o , (~)0 , respectively.
244. Introducing this notation, i.e.,
d = (u,v) = {U,v} + {Ue,Ve} + {Uo,Vo}
P =P+ Pe + Py (143)

Ut,=V+De+DD
in Equation 141 and assuming, without loss in generality, the periodic

waves to propagate in the x-direction, i.e., invoking ﬁe = Q0 and

05/0y =0, the x and y components of the governing equation become
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J(ue+ug) _ 1 O(p+po) Jdarl_ ~ . Q(G+ae+io)
S =3 " i R e
(144)
J(ve+vop) 10p 0 . - - D(V+Ve+vo)
i AR A KR My

245. To obtain the equation governing the time-independent (current)
velocity, Equation 144 is time-averaged. Making use of the fact that only
products of even or odd terms contr.bute to the time-average, this results

in the equations

d [-da 10p 0 [~ 0ue - OG
Bz_”az] Ty Ox ?)z_"e?ﬂ£ * Vo zo\
(145)
d[-0v] 18 9[- Ove . - 0
?7'2\"32] 'E}?;‘BEN”EHE‘*”DETO

which, by comparison with Equation 51 of Part 1Ii, clearly bring out the
wave-influence in the equations governing the current.

246. Subtracting Equation 145 from Equation 144 and collecting even and
odd harmonics, the equations governing the time-dependent (wave) motion are

obtained for the direction of wave propagation

g}:’ﬂ = _% 650 + g;[(z‘/ + De)ggg} + g;[i/o—a——a(ﬁ : “e’] (146)
Joe 9[- 05, - Dag] . 0 (.05 . 8 [ da
de T 0z|"00z " V0 | T G\"02 ) T 9:|"0
d |- du - Ou
+ %[veﬁ - 1/(,3—2—“ (147)
and for the direction pe-pendicular to the wave direction

Boo D[ - 8% 0 [-0E + e
e - az[“’ ' "**’a';] ' HZ[”O’T_ (148)
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247. In passing it is noted, by comparison with Equation 48, that the
time-independent current velocity appears explicitly in the equations
governing the wave motion.

Weak current assumption

248. To further simplify the governing equations derived above, the

assumptions of a weak current, expressed through the smallness of the

parameter
po= EC < (150)
Ugw

also used in Part II, without restrictions on its magnitude, is introduced.
249. Since the flow in the immediate vicinity of the bottom scales with

the ratio of the shear stresses, it follows that
I -
{u, v} _ 0[4] = o(u?) (151)
w

where ug , the odd harmonic wave velocity, is used to represent the wave
velocity since this is expected to be the leading term for a simple
harmonic wave motion.

250. As arqued by Trowbridge and Madsen (1984a) and in Part II, the
time-varying eddy viscosity should, in the immediate vicinity of the
bottom, be related to the shear velocity based on the instantaneous (time-

varying) bottom shear stress, 7h(t) , i.e.,
Uy = Uy(t) = Thit)y| /P (152)
251. For a periodic wave motion, wu; given by Equation 152 will result

in a shear velocity consisting of only even harmonics {(including a constant

time-invariant contribution). The addition of a small steady shear stress

97




on top of the periodic wave shear stress will produce an asymmetry between
the magnitude of the bottom shear stress associated with wave crest and
trough. This asymmetry will, as demonstrated by Trowbridge and Madsen
(1984b), result in odd harmonics appearing in the temporal variation of
Ux

252. Based on the preceding arguments, it 1s therefore reasonable to
assume—subject to later verification—that the terms in the eddy

viscosity expansion given by Equation 143 are related according to

= = o(f)
v
(153)
=2 = oh
v
where ﬂ is of the order 0.4 (Trowbridge and Madsen 1984a).
253. Using the rough order-of-magnitude estimates presented above

comparison of the first two ccrms on the right-hand side of Equation 147

suggests

1
44

= o(u?) (154)

fog)
o

Approximate equation for the wave problem

254. Applying order-of-magnitude arguments based-on the preceding
estimates to Equation 146 reveals that the last term in Equation 146 is of
the order u4/ﬂ € 1 relative to the smallest of the remaining terms,

Ve 3ho/0z , which is of the order f . The equation governing the odd

harmonic wave motion in the direction of wave propagation may thercefore be

taken as
aag 1 af)o ﬁ -~ - aa(}‘{
- Sul ) EER L P (1o%)

which is identical to Lhe e&quation solved by Trowbridge and Madsen (1984a)

for a pure wave motion.




255. Sinilarly, the last two terms on the right-hand side of Equation
147 are seen to be of order ﬁ < 1 relative to the remaining terms, which
are of order g2 . Thus, the even harmonic wave problem in the direction of

wave propagation may be approximated by

(156)

256. As mentioned, the smallest term retained in the odd wave problem,
Equation 155, is of order ﬂ relative to the leading, 0O(1l), terms while the
entire expression for the even wave problem, Equation 156, is of order u2
i.e., considerably smallier than the smallest term retained in Equation 155.
It is therefore consistent, as a first approximation, to disregard the even
wave problem.

257. For the wave motion perpendicular to the direction of wave
propagation the forcing terms are associated with the current, i.e.,

Vo Ov/0z and D¢ 0v/0z in Equations 148 and 149, respectively. It follows
from this that

]

= = ot
Ug
(157)
= = o(fu?
Up
258. It is therefore entirely consistent with previous approximations

and not surprising that the wave motion within the boundary layer in the
direction perpendicular to the direction of wave propagation is negligibly
small.

Appro<imate equations for the current problem

259. Applying order-of-magnitude arguments to the equations governing
the time-independent (current) problem, Equation 145, shows that these may

be approximated by

268 -2k 6T
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where terms neglected are at most of order

(159)

B

relative to those retained.

260. Integration of Equations 158 and 159 from the botto:, 2z - 0,
the outer edge of the wave boundary layer, z = o, gives

40 - = §

_0u 1 ap ~ Oug

v = = - |V

[a; i A e (160

z—0 z—0

16 _

_3v] 1 dp

v, == =0 (161)
z 2590 p 3§

261. At the outer edge of the wave boundary layer, =z = 0 , the wave

motion will

Oux/0z ~ 0

vanishingly small so long as 6

sale,

problem.

not contribute to the shear stress since here

560/32 =
Also, the contribution of the mean pressure gradient term is

is well within the current boundary layer

in which case the law of the wall may be applied to the current

At the outer edge of the wave boundary layer, the following

relations therefore hold

iy

?C ’
Pew

262.

where

angle

and 161 may

G
ga

= uzc{COS¢(;w, Sin¢cw) (162)

aa} ) 1¢
Oz 5 P

the current bottom shear stress vector, is assumed to be at an

to the direction of wave propagation.
In the immediate vicinity of the bottom, =z

-+ 0 , Equations 160

therefore be written as

——

~ Ou
Uiccos¢cw - VDHEQ (163)

uzcsin¢cw (164)
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which constitute the equations governing the current in the direction and
perpendicular to the direction of wave propagation.

263. It is of particular interest to note that the time-~varying eddy
viscosity formulation, in contrast to the time-invariant eddy viscosity
formulation of Part IV, gives rise to a difference between the equation

governing the current velocity components.

Eddy Viscosity Formulation

264. Other than relating the scale of the eddy viscosity to that of the
shear velocity, Equation 152, for the purpose of rough order-of-magnitude
estimates, nothing has been said about its functional form up to now. To
be more specific about the eddy viscosity formulation to be used in the
solution of the wave and current problem, it is assumed that the eddyv
viscosity may be expressed as a product of two terms—one accounting for
the temporal, the other for the spatial variability.

265. It is therefore assumed that
Vg = g(z)-f(t) (165)

where f(t) is obtained from the temporal variation of the instantaneous

shear velocity, ug(t) = J‘?b(t)/p.

266. Commensurate with the weak current assumption, the instantaneous

bottom shear stress vector is assumed given by
?b = {?lcosﬂ + chos¢cw, Tcsin¢cw} (166)

where 7{ 1is the magnitude of the first harmonic shear stress at the
bottom, @ is the phase of the wave, &t , plus some arbitrary phase angle,
and terms involving even harmonics in the shear stress have been neglected
following the argument justifying that the even wave problem, given by
Equation 156, need not be solved.

267. To obtain the magnitudes of the instantaneous shear stress from
Equation 166 only terms linear in 7¢ are retained since T¢/Ty{ = O(u?) .

Therefore
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|#5] = 7o = (Hcos?0 + 27 Tecosfeycosly? = ?1|cosﬂltl + plecos CW}% (167)
Ticos
268. The square root in this expression may be expanded treating the
Tc -term as small relative to unity. This assumption is clearly violated
during a short time interval around cosll = 0 ; however, for most of the
wave period, the assumption is a good one, and when it is violated, the
resulting term is indeed small. Therefore, formal expansion of Equation

167 yields

T TcCOS
Zb uz = uzllcosﬂ, 1+ —2———223 (168)
p T 1cosl
269. To obtain an expression for the instantaneous shear velocity in
terms of a harmonic expansion, as assumed in Equation 143, use is made of

the Fourier expansions

2 2
|c050| ;[1 + 5cos20 + --J

Jggl_i . ...
cos - I(CC )

which introduced in Equation 168 yields

(169)

T
T1

ul = guzl[l + %coszﬂ + 2Z£ESEQ£E0050] (170)
and therefore approximately

T

Uy = I%u*l[l + %cosZO + ISEEEQQECOSOJ (171)

This equation can be written as

u 2 2 112
=+ - s flcosew - [;coso + 3[;c0520 (172)

Uxl
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and the exact value of wuy/uy| is obtained from Equation 167 as

1
Ei: = (cos?f + 2p2cosPcycost + p)? (173)
*

270. Egquation 172 gives an approximation to Equation 167 in terms of a
constant and first- and second-harmonic terms. The "best fit" values of
the three coefficients in this expansion can alternatively be obtained from
a Fourier expansion of Equation 173.

271. Fiqgure 22 shows the approximate expansion in Equation 172 compared
with the exact expression from Equation 167 and to a "best fit" curve drawn
using the first three coefficients of a Fourier cosine expansion of
Equation 173, using two different values of [ and {cw .

272. The approximate expansion is fairly close to the exact value even
at these very large values of [ For the case with {¢¢y = 0 , the
approximation does worst when the exact value is near zero. However,
because of the persistence of turbulent fluctuation, it is physically
unrealistic to expect the eddy viscosity to vanish during the cycle, and
this failure is therefore not considered a serious shortcoming of the
approximation.

273. The use of the "best-fit" coefficient improves the approximation,
particularly for the case with ¢cw = 90 . However, these coefficients must
be calculated for each case numerically; therefore, the expansion with the
final coefficients in Equation 172 is considered sufficiently accurate for
the purposes of the present study.

274. With the temporal variation of the instantaneous shear velocity
given by Equation 171 and choosing the spatial variation used for the time-
invariant eddy viscosity model in Part IV results in the following time-

varying eddy viscosity model

Kugyz z < a;b
Vg = {Kkuga 6 a6 < z < Ea,é/e (174)
2
Kugcz z 2 [;015/6
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with uy given by Equation 171 and the definitions of 0 and € being the
same as those introduced in Part IV with the appropriate modification due
to the weak current assumption. For example uycw 2 uy) since the current
is weak so that € = £ € 1 and 6 = Kuy)/¢ . As in the time-invariant
model, @; is a free model parameter that is determined after comparison
with the experimental data.

275. In the time-invariant eddy viscosity model of Part IV, the eddy
viscosity in the wave boundary layer was scaled by uycw , which was derived
from the maximum shear stress. This ensures that the slope of the eddy
viscosity profile in the lower region zj < z < ad is greater than that in
the outer region.

276. For the time-varying model outlined above, however, it is seen
that the slope of the mean eddy viscosity profile is greater in the wave

boundary layer only if

g o= Sxc o |2
U1 T

(175)
which means that the use of the present model, derived for small g , is
limited by the condition given by Equation 175.

277. The level of the transition from an eddy viscosity scaled by the
wave shear velocity to one scaled by the current shear velocity in Equation
174 is chosen so that the mean eddy viscosity is continuous. This results
in a discontinuity in the instantaneous eddy viscosity at this level
because the eddy viscosity above it is considered time invariant, while
that below varies with time. The time-varying eddy viscosity is due to the
wave motion; therefore, a more logical place to cut off the time variation
would be the top of the wave boundary layer, i.e., at z = § . The wave
problem could then be solved for a time-varying eddy viscosity below 2z = ]

and a time-invariant eddy viscosity above this level with the solutions

matched at this level. This procedure would, however, be cumbersome to
implement. In practice it is found that the assumed form of the eddy
viscosity above the level z = § does not have much effect on the wave

solution. For the solution of the wave problem, it is therefore assumed
that the eddy viscosity variation is as given in Equation 174 but with the

time variation assumed to be present in the upper region as well. As will
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be seen, this makes the solution far less complicated than the procedure
outlined above while not being much in error so long as the level
z = y2/70,6/4 is greater than the level z = § , This condition will be

satisfied when

2
€ =4 < j;al (176)

278. Before proceeding with the solution to the wave and current
problem inspection of Equation 171 in conjunction with Equation 172 shows
that the assumption regarding the order of magnitude of the eddy viscosity
components made in Equation 153 indeed are correct with ﬂ = 4 being

small—although not very small—relative to unity.

Wave Problem

279. The equation governing the wave problem is given by Equation 155

and may alternatively be expressed in terms of the velocity deficit
g = 2+—= (177)

where uyx # ux(z) is the near-bottom velocity predicted by linear potential

wave theory, i.e., governed by

Yoo _ _ 650
T (178)

X

11

280. Introducing these expression in Equation 155, this equation

becomes
g‘_tlﬂ - az[a[l . Kﬁ]gg‘-‘} (179)
v
where
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=1 + %cosZ(wt + §2) (180)

[y
+
it Im'

is obtained from Equations 171 and 172.

281. By introducing a change in the time-variable from t to t

defined by
ot 1
= -+ —
o = 1+ Jeos2(ut + ¢2) (181)
or
vt = Wt + %sinZ(wt + @2) (182)

the equation governing the wave motion becomes

‘g}:i = %E["’g';ﬂ] (183)
£

which is identical to the equation governing the time-invariant eddy
viscosity formulation of the wave problem, except that the time-invariant
eddy viscosity in Equation 183 is based on the average shear velocity
rather than the maximum shear velocity used in Part IV.

282. To solve Equation 183, it is necessary to specify the no-slip

boundary condition at the bottom

ug = — = -coswt (184)

in terms of the new time-variable, ¢t
283. From Equation 182, treating the factor of (1/6) in front of the
cyclic term as small, the first-order relationship is that wt = wt , which

may be introduced in the cyclic term to obtain

~ 1 ~
wt ® Wt - Zsin2(wt + #2) (185)

284. Substituting Equation 185 for wt 1in Equation 184 and expanding

the resulting expression around wt , consistent with the degree of
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approximation adopted in Equation 185, yields the boundary condition to be

satisfied for z = O

-cos[wE - %sinZ(UE + ¢2)] —{cosUE + sinwE[%sin2(wE + ¢z)]}

[
[>%
It

-[cosUE + l—cos(wE + 2¢9) %Ecos(3wE + 2¢2)] (186)

12

285. The approximation to cos(Wt) is plotted in Figure 23 along with
the exact value for ¢y = 30° . It is seen from the figure that Equation
186 is an excellent approximation to Equation 184 for this value of ¢2,

which is chosen to be in the range encountered in practice.
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286. The occurrence of third harmonics in the boundary condition
indicates that the solution will contain this harmonic in addition to the
tundamental harmonic motion. Since Equation 183 and its boundary condition
Equation 186 are linear, a solution of the form

2ei(ut+2¢2) 3ei(3wt+2¢2)} (187)

iwt
ud = Re[udle + ug + uqg

is agssumed. This ensures that Equation 186 is satisfied if

1
udy = -1, udz2 = - 35, ud3 = T3 at z = 29 (188)

is imposed as a boundary condition on each part of the solution. The other

boundary condition is
udy , ud2 » udsy - O as zZ 9o (189)

287. Now the solution for each of the terms ug2 , ud2 , and ud3 can
be found separately. Considering wud; , it is seen that the governing
equation and boundary conditions are the same as for the wave problem of
the time-invariant model in Part IV. The only difference is the presence
of the factor J57; in the eddy viscosity distribution. Therefore, the

governing equation can be nondimensionalized as in Part IV with

5 = ’5:11 (190)

in this case and solved to give five simultaneous equations similar to
Equations 110 and 113 to 116. The only difference will be that a factor
J57; appears in the denominator of the terms inside the square root sign of
Equations 110, 113, and 114 and in the numerator of those terms in
Equations 115 and 116.

288. Considering the solution for wu4s , it is seen that the same
equations are obtained as for ud; with the only difference being that the
first equation will have a value of -1/12 on the right-hand side instead of

-1. Since the right-hand side in the other four equations is zero, cf.
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Equations 113 to 116, this value merely scales the five unknown

coefficients in the solution. Therefore, ud2 can be written as

(191)

289. Finally, it is seen that the solution for the third harmonic term
udy will yield five equations similar to those for ud; with a factor 3
(3¢ replaces W) appearing in the numeratcor of all the terms inside the
square root and a value 1/12 on the right-hand side of the first equation
instead of -1.

290. Therefore, after soclution of these two sets of simultaneous

equations the solution can be written as

iwt , udi i(wt+2¢9)

12 + ud

3e1(3wt+2¢2)} (192)

ud = Re{udle

It should be noted that the first term in Equation 192 is of zeroth order
in the small parameter assumed in the expansion of the boundary condition,
Equation 186, while the other two terms are of first order.

291. The result obtained so far is in terms of the variable ¢t;
therefore, the solution must be completed by transforming Equation 192 into
the real-time variable t wusing the relationship between the variables in
Equation 182. To be consistent, this reverse transformation needs to be
carried out to the same order in the small parameter of Equation 185 as was
used in the expansion of the boundary condition to obtain Equation 186.
This means that the term exp(iwt) in Equation 192 must be expanded to
first order while the other two exponentials need be expanded to leading

order only. These expansions result in

QiWE | jiwr 1 -i(we+29y) 1 _i(3wt+24) (193)
12° 12°

SL(WE+242) _ _i(wt+242) (194)

QL (3UE+20y) | _i(3ut+24y) (195)

292. Substituting Equations 193 to 195 into Equation 192 yields
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ei(3wt+2¢2)[ud1

i Wt . "
ug = Re{udl[el + %sin(wt+2¢2)] + 12 + ud3J} (196)

293. The solution of the wave problem is closed, as in the case of the
time-invariant model, by defining the bottom shear stress as in Equation

128. In this case, the definition is
== = lim | (U+V dug (197)
7 - N ( e)g;—

294. Since tlie deficit velocity in Equation 196 involves first and

third harmonics, the shear stress in Equation 197 will also have first and

third harmonics. By writing
lim [Q%;‘—’] = 2‘3% el (198)
z=zg z=2(
lim [59-‘5?‘:—3} = 2‘5—‘;—3 eio (199)
z=2) z=2zg

it then follows from Equation 196 that

1 . aﬁo _ . (?ud
;‘g lim ['az—'] = lim [3—2—
z=2y z=2zy
= Qud) [cos(wt+7) - %5(c05(0t+2¢2—7) - cos(Wt+2¢2+7))
z z=2z9
v 2 cos(aut+2gpryy| + Juqs cos (3Wt+202+0) (200)
12 Jz z=2p

295. This expression can be substituted into Equation 197 along with
the expression for the eddy viscosities from Equation 180 to obtain an
expression for the bottom shear stress. Let the first and third harmonic
shear stresces be denoted by 7, and 73 , respectively. Then, after
carrying out the substitution in Equation 197 and separating the first and
third harmonics while retaining only those terms of the first order in the

small parameter, the shear stresses are obtained as
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udi

171 _ J‘,w*x
up P

[cos(wt+7) + i—z-(cos(wt+2¢2+7) + cos(wt+2¢2—7))] (201)

296. Now T3 and uyy are related by

% = uyilcos (Wt+g7) (202)

297. By rearranging the term giving the time variation in Equation 201,

it is seen that

cos(Wt+7) + %[cos(wt+2¢2+7) + cos(Wt+209-7))

= cos(wt+¢2){cos(7—¢2) + %cos7cos¢4

- sin(wt+¢2)[sin(7-¢2) + %sin¢2cos7] (203)

298. From Equation 202, the time variation of 7Ty; 1is given as

proportional to cos (Wt+#3) . Therefore, the second term in Egquation 203
must vanish for all t . This leads to
1l é
$2 = tan Ztany (204)

and the closure equation, i.e., Equation 201, can be written as

Ukl o {25, (0"‘“ (205)
ub 2=z
with
1
P = cos(7-§2) + gcos7cos¢2 (206)
299. Equation 205 is an implicit equation for uyx; and can be solved
by iteration. For small § it is seen that this equation differs from the

closure equation of the time-invariant model only in the presence of a

factor 2/7P in Equation 205. From Equations 204 and 205, it is found
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that P = 1.12 for 7 = 30° which is a typical value in practice. This
results in the extra factor in the closure equation having a value of 0.89.
300. As a result of this similarity in the closure equations, it can be
expected that the wave solution from the time-varying model will be close
to that of the time-invariant model. This can be seen in Figure 24, which
compares the wave friction factor for a pure wave motion obtained from the
two models. It is apparent that the friction factors differ by only about
9 percent.
301. It should be noted that the wave friction factor for the
time-varying model plotted in Figure 24 is defined using the magnitude of

the first harmonic of the bottom shear stress, i.e., by

1
Ti = SPfwub? (207)

and not by the maximum bottom shear stress. 1In the time-invariant model,
the assumption of a constant eddy viscosity resulted in the bed shear
stress containing only a first harmonic component, which meant that the
mraximum bed shear stress was equal to the magnitude of that component.

302. Furthermore, since the near-bottom eddy viscosity is scaled by
ux1 , the only effect of a current (i.e., g # 0) on the wave problem will be

to impose a linear variation of the eddy viscosity above the level

( = J%al/u instead of the constant value used in the pure wave problem

(i.e., when [ = 0). The wave friction factor in the presence of currents,
fwc , is plotted against Ap/kn in Figure 25 for several values of g . It
is seen that fy¢ 1is only very weakly dependent on f . However, the

symbol fyc¢ will still be used to denote the presence of a current.
303. sSimilarly, after substitution into Equation 197 the third harmonic

shear stress can be written as

1732 dui| 1
an P = J;Ku*][ CW— z=zo4COS(3Ut+2¢2+’y)
Juds
+ 'C—E%_ cos (3Wt+2@9+0) (208)
z=2y
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304. After manipulating this expression as done for Equation 201, the

third harmonic shear stress can be written as

%ﬁ = Igﬂubu*lgcos(Bwt*¢3) (209)
where
l(audl sin(2¢a+7) + Q%%ﬁ sin(2¢2+0)
¢3 = tan’! 3 2729 7o (210)
]C udj cos(2@2+7) + (—B%é cos(2¢2+0)
z=z( z=2(
and
= —|Caudl COS(2¢2+7-¢3) + aUd3 c05(2¢2+0-¢3) (211)

305. Therefore the magnitude of the third harmonic shear stress can be
found using Equations 209-211. It is found that the ratio 7¢/73 1is 0.115

for Ap/kn = 4 and 0.136 for Ap/kn = 108 . Furthermore, ¢3 was found to

have almost three times the value of ¢ . This means that the peak shear
stress will be very close to the sum of 71y and 73 . In other words, the
peak shear stress is about 12 percent greater that 7; . Recalling that the

value of 71 from the time-varying model was about 9 percent less than the
maximum shear stress given by the time-invariant model, it is seen that the
maximum bed shear stresses predicted by both models will be nearly
identical.

306. The first and third harmonic velocities, denoted by uy; and

Uw3 , can be obtained from Equation 196 as

Uw) = ub{coswt + Re[udl[elwt + ésin(wt+2¢2)]}} (212)
and
i(3uwt
Uwj = ubRe[el( +2¢2)[§gl + udg}J (213)

Current Problem

307. The governing equations are Equations 163 and 164. The second
term in Equation 163 appears as a result of the eddy viscosity being

allowed to be time-varying. From Equations 172 and 174, it is seen that




Vo = Dplcosfcwcos (Wt+@2) (214)
and from Equation 212, it is found that

dag R {audl[eiwt

'l upRe bz + %Sin(wt+2¢2)]} (215)

308. Let

dudy _ ub,. idi(z)
0z &

U’ (z)e (216)
where § is defined in Equation 190 and
U (2 = dud; (217)
Then
g? = %QU’(z){cos[uum(z)] - %sin¢1(z)sin(wt+2¢2)} (218)

and the second term on the right-hand side of Equation 163 can be evaluated

as

. a" _ U ; 1 1 . .
Dogal = Dplcosfowgy (z);{cos[¢1(z>-¢21 - gsm¢1(z)5m¢2} (219)

309. Substituting Equation 219 into Equation 163, dividing by ¥ , and

integrating from z( to a level =z gives

v

z z
2 2 /
u = cos¢cw J Eiﬁ—dz - EJSQ J g—;—il-{cos[(ﬁl(z)—%] - %sin¢1(z)sin¢2}dz
z z

0 0

(220)

310. Introducing the nondimensional vertical coordinate ( , defined in

Equation 61, gives
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2 /
4 = cosfcw éﬂff—dg - p2up E-——;—ﬁ-)-{c05[¢1(f)-¢2]
¢ v Co

- %sin[¢1(C)lsin¢2}dC (221)

311. This can be written as

u = cosfewl11(() - I2(()) (222)
with
uyc?d
1({) = | =2&=a( (223)
¢o ¥
and

2 /
12(¢) = M;—‘ﬁ—’{cosm(c)-m - %sinm(()sinm}dc (224)
Co

312. Integration of Equation 164 results in
v = 11(()sinfcw (225)

313. Equation 222 indicates that the equation for the component of the
current velocity in the wave direction has two terms—the first due to the
mean shear stress and the second due to the time-varying eddy viscosity,
i.e., due to the wave motion. Equation 225, which is for the component in
the direction normal to the wave motion, has only the contribution from the
mean shear stress.

314. Equation 222 can be written as

v

A
2
G- jwc_m-m”dz (226
YA

0

where
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~ du
o,
R S Teosor (227)

315. Using Equation 214 for the relation between Vg and 7V and

Equation 199 for the definition of [§ , Equation 227 can be written as

7 Ou
R(2) = ;=3 a?cos(m:wz) (228)

316. The function R(z) gives the importance of the second term, which
is related to the wave motion, to the first, which is related to the mean

shear stress. 1In the limit as =z approaches 2zy it is seen that

, T S PR dug
lim (R(2)) = G;:nt;u*lllm [za;—cos(wt+¢2) ] (229)
z-2z z—zg

where the expansion for ¥ from Equation 174 has been used. From the
closure of the wave problem in the time-varying model in Equation 205, this

can be written as

1, .
[cos(¢2—7) - 351n¢251n7}
lim (R(2)] = 2P ‘ (230)
292

where 7 1is defined in Equation 198 and P in Equation 206.

317. Equation 230 has been evaluated for range of values of g and
Ab/kp . It is found that the value of R(z) at the bottom lies between
0.423 and 0.428 for 1 < Ap/kp < 106 and for any value of 4 .

318. The above result shows that near the bottom the mean velocity
component in the wave direction, u , increases less rapidly than that in
the direction normal to the waves, v . This means that the value of the
mean velocity will be sensitive to ¢cw because the partitioning of the
velocity into the two components depends on ¢cw . It is hoped that this

new mechanism by which the current velocity is linked to ¢cw will lead to
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results that are in better agreement with the data than the results of the
time-invariant model, where this mechanism was not present.
319. The .ntegral I;({) can be evaluated analytically using the eddy

viscosity distribution given in Equation 174 to yield

Rt feden

_ [ SN
T a
Il(() = { BiguI; gT -1 + ln[Z%]] a; < < < (231)

wrel ) fC8 ),y /J.E[ln[al] - 1] ¢ > J}l

K i

where the constants of integration have been determined by requiring
continuity of the velocity at the various matching levels.

320. Once the wave problem is solved, the values of U’ ({) and ¢1({)
can be found at any level, thus allowing the numerical integration of 1Is .
Finally, the angle between the current velocity vector and the direction of

waves, §¢ , is given by

- tan(¢cw)11(£)]
= tan’! 232
e an [Ix(() - I2(() (232)

321. Equation 230 shows that near the bottom Iz({) is positive and
less than Iy({) . Therefore 1I;(() is greater than I;({) - Iy({), which
results in @¢ > fdcw from Equation 232. In other words, the effect of the
waves is to deflect the current velocity further from the wave direction
than the mean shear stress. Since the second term in Equation 163 is
related to the waves, it can be expected to die out near the top of the wave
boundary layer. Then IQ(C) will reach a constant value at that level
while I{({) keeps on increasing. This will result in the difference
between ¢c and ¢cw decreasing; therefore, at large heights above the
bottom, the direction of the current will approach that of the mean shear
stress. This feature was not present in the time-invariant model, and its
presence here is an indication that the time variation of the eddy

viscosity provides a more complete representation of the problem.
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322. It should be noted that when Do is defined by Equation 214, it
is implied that the eddy viscosity varies with time for all values of 2z ,
whereas in Equation 174 the time variation is specified only below the

¢2/1(01/p) . As discussed, the wave effects die out around the

level =z
level 2z = 6 , and integral I will reach a constant value. Therefore use
of Equation 214 will not lead to significant error so long as the
inequality in Equation 176 holds.

323. Another point to be kept in mind is that @i the model parameter
has not been specified as yet. As in the time-invariant model, this is
done by comparing the model results to the experimental data and selecting

a value that gives the best agreement.

Comparison with Experimental Data

324. The results of the time-varying eddy viscosity model are compared
with the experimental data used in the preceding chapter.
Waves alone

325. The first harmonic wave velocity and phase from Test 1 of Jonsson
and Carlsen (1976) are compared in Figure 26 to the predictions from the
time-varying model using three different values of the parameter @a; . It
is seen that the predicted profiles are very similar to those from the
time-invariant model, using the corresponding value of @ , that are shown
in Figure 15. The results for the other data sets are also very close to
those from the time-invariant model and will therefore not be presented
here. As shown in Figure 26 the three values of @a; give identical results
near the bottom, which are in good agreement with the data while diverging
at the top of the boundary layer where the agreement with the data is not
that good.

326. The third harmonic wave velocity and phase for the same experiment
are compared with the predictions from the model, using the same values of
@y , in Figure 27. It is seen that the predicted maximum magnitude of the
results is less than the experimental value by 60 percent or more while the
shape of the velocity profile is obtained reasonably well. The theoretical
phase profile of the third harmonic is similar to the experimental values
but with a shift in the vertical axis. The comparison between theory and

experiment for the third harmonic of Test 2 of Jonsson and Carlsen is
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similar to Figure 27 and is therefore not shown. The agreement with the
data shown in Figure 27 is similar to that obtained by Trowbridge and
Madsen (1984a and b). The data clearly show the existence of a third
harmonic component, thus justifying the inclusion of a time-varying eddy
viscosity.

327. The predicted first harmonic, third harmonic, and peak shear
stresses and the phase of the peak shear stress from the time-varying model
are presented in Table 9 along with the peak shear stress and phase from
Davies, Soulsby, and King (1988). The magnitude of the third harmonic
shear stress is about 11 percent of that of the first harmonic shear
stress. These two shear stresses have nearly the same phase, resulting in
tl.« peak shear stress being the sum of the two components.

328. Figure 24 indicates that the friction factor for the time-varying
model was about 9 percent less than that for the time-invariant model.

This friction factor was defined using the first harmonic shear stress
only. However, when the sum of the two harmonics 1is considered, it 1s seen
that the peak shear stress in the time-varying model is very close to the

peak shear stress of the time~invariant model, which only allowed a first

Table 9

Calculated First Harmonic, Third Harmonic, and Peak Shear Stresses

and the Phase of the Peak Shear Stress for the Conditions of

Davies, Soculsby, and King (1988) frocm the Time-varying Model

Compared to the Results of Davies, Soulsby, and King (1988)

Time Varying Model Results Davies et al.
Shear Stresses (Pa) Phase of Phase of
Peak Peak Peak
Peak Shear Shear Shear
First Third Shear Stress Stress Stress
Harmonic Harmonic Stress deg Pa deg

Data Set a1=0.5 a;=0.8 a;=0.5 a=0.8 a=0 a=0 a1=0.5 a;=0.8

DVW05 9.3 9.4 1.1 1.1 10.3 10.5 39.4 35.1 8.1 28.2
CVW10 26.9 26.9 3.2 3.2 30.0 30.0 34.8 32.3 23.5 26.4
DVW10 50.3 50.1 6.0 5.9 56.3 56.0 32.9 30.8 44.3 25.2
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harmonic, shown in Table 6. This agrees with the results of Trowbridge and
Madsen (1984a and b).

329. As in the case of the time-inrvariant model, the comparison shown
in Figures 26 and 27 indicates that a value of @; equal to 0.3 or slightly
less will result in the best agreement with the data. However, the higher
values of (@; agree with the data near the bottom. Therefore, as in the
time-invariant model, determination of a value for @) 1is deferred until
the comparison with the experimental current velocity profile is made.

Waves and currents

330. The current velocity profiles obtained from the time-varying model
using three different values of @) are compared with the Bakker and van
Doorn (1978) data in Figure 28. The profiles obtained using @; = G.8 and
a; = 1.0 for the data set BVD1l0 are in better agreement with the data than
the profile obtained with @; = 0.5 . Considering the set BVD20, all three
values of @y give good results with the two higher values doing slightly
better.

331. However, in these two sets, the current is specified by the
velocity at a point in the upper logarithmic region; i.e., the calculated
profile is required to pass through a selected data point. Since the model
also uses a logarithmic profile in the outer region, this means that the
calculated profile will not be very sensitive to the value of ay .

332. A better test for the appropriate value of @) is with data sets
where the current is specified by the mean shear stress as in the
conditions of Davies, Soulsby, and King (1988). The results for waves and
currents in the same direction using @; = 0.5 and @; = 0.8 are compared
with their results in Figure 23. It is seen that @; = 0.8 gives a good
fit to the data. This value of @; is greater than the value @ = 0.5 that
was proposed for the time-invariant model.

333. There are two reasons for the different values of the model
parameter obtained from the two models. First, the eddy viscosity used in
the time-varying model is based on the mean shear velocity instead of the
maximum shear velocity used in the time-invariant model. These two shear
velocities differ by a factor of ¢57; as shown in Egquation 172.
Thereiore, if it is required to have the same value of eddy viscosity in
the intermediate region 015 < z < J37?015/u , it seems that a value of a,

around 0.625 should be used.
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334. Second, in the time-varying model, the shear velocity is based on
the maximum wave shear stress rather than the maximum combined shear stress
because the model is derived assuming a weak current relative to the waves
(§ € 1); therefore, the two shear stresses are assumed the same. Hcwever,
the value of [} for the conditions simulated by Davies, Soulsby, and King
(1988) is in the range 0.26 to 0.61 and is therefore not small. This means
that the value of @) must increase further if the eddy viscosity profile
used and therefore the current velocity profiles obtained are to be
similar.

335. When conditions where g 1is in fact small are considered, a value
of a; about 0.65 gives a current profile that matches the profile from the
time-invariant model using @& = 0.5 . This change in ;) can also be seen
in the values of Table 10, which gives the current shear stresses obtained
for the conditions of Bakker and van Doorn (1978) for the three values of
@y along with the results of the time-invariant model with a = 0.5 . The
data set BVD10 has a value of [ = 0.28 while the set BVD20 has 4 = 0.56 .
It is seen that for the set BVD10, a value of @y between 0.5 and 0.8 gives
the same result as the time-invariant model while @1 = 1.0 1is required to

obtain the same result for the set BVD20.

Table 10

Calculated Maximum and Current Shear Stresses for the Conditions of

Bakker and Van Doorn from the Time-varving Model for Three Values

of @y and the Time-Invariant Model with a = 0.5

Current Shear Stress (Pa) Maximum Shear Stress (Pa)
Time- Time-—
Invariant Invariant
Time-Varying model Model Time-Varying Model Model
Data Set 0y=0.5 ;=0.8 04=1.0 =0.5 2)=0.5 ;=0.8 @1=1.0 a=0.5
BVD10O 0.17 0.21 0.23 0.19 3.0 3.1 3.1 3.0
BVD20O 0.67 0.72 0.74 0.74 3.3 3.4 3.4 3.5
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336. The results for waves and the current at an angle are compared
with the results of Davies, Soculsby, and King in Figure 30 for @1 = 0.5
and @; = 0.8 . The figure shows that the time-varying model shows much
greater sensitivity to the angle between the waves and the current than the
time-invariant model shown in Figure 21. The velocity difference between
¢cw = 0 and ¢cw = 90 in the upper region is found to be 5.2 cm/sec as
compared with 2.5 cm/sec from the time-invariant model.

337. This improvement is a result of the additional term in the
equation for the current velocity in the wave direction, i.e., in Equation
163. It shows that there is more resistance to the mean flow in the wave
direction than in the direction normal to the wave motion. In the time-
invariant model the angle between the waves and the current, ¢cw , only
comes in in Equation 119, which relates the combined shear stress to the
wave and current shear stresses. The only effect ¢y has on the velocity
profile is to make uycw take on different values which results in only a
small change in the profiles unless § is very large.

338. Another result of the time-varying model using two equations from
the two components of the mean velocity is that when 0 < fcy < 90° , the
direction of the mean velocity vector changes with height above the bottom
as given in Equation 232. The results for the case ¢cw = 45° are compared
with those of Davies, Soulsby, and King in Figure 31. As expected from the
form of Equation 92, the model predicts that the current velocity is at a
greater angle to the wave direction than the mean shear stress. However,
the predicted value of this increase is less than the data by about 4°,
while the shape of the curve agrees with the data.

339. The comparisons of the current profiles with the experimental data
strongly suggest that @) = 0.8 be selected as the value of the model
parameter. The comparison with the pure wave data suggests a value of
@y = 0.3 be used. As in the time-invariant model, the model parameter will
be selected so as to give the best agreement with the current profile
because the resulting relatively poor agreement with the pure wave data is
only at the top of the wave boundary layer, a region that is not of great

importance in likely applications of the theory.

340. Therefore a; = 0.8 1is taken as the model parameter. There is,
however, an indication that a smaller value of @; (around 0.65) will be
more suitable in cases where [ 1is small. Nevertheless, Figures 28, 29,
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and 30 show that @) = 0.8 give good agreement for conditions with (4
ranging from 0.25 to 0.6. This is seen as sufficient evidence to adopt

that value for the model.

Simplification of Current Problem

341. The time-varying model presented in this chapter is able to
represent the wave-current interaction better tian the time-invariant
model. This improvement was gained at the cost of reaquiring a numerical
integration to obtain the current velocity profile. If a simple analytic

form of this integral can be obtained, the solution of the current problem
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of this model will be no more complicated than that of the time-invariant
model.
342. As given in Equation 226, the current velocity in the wave

direction can be written as

[«

2
ugelcosdew y _ gp(()ja( (233)
14
(o

with V¥ defined by Equation 174 and ) by Equation 190. Equation 229

indicates that the value of R({) is between 0.423 and 0.428 at z = zg .
R({) represents the effect of the wave motion on the current profile and
can be expected to die out at a height above the bottom that is scaled by

the wave boundary layer thickness.

343. Therefore, the simplest approximation for R(C) will be a linear
variation from a value of 0.425 at 2z = z3 to zero at 2z = 0 with the
value being zero for 2z > 6 . In terms of the nondimensional vertical

coordinate ( , this can be written as

A + B( z <6
R(() = (234)
6] z2 >0
where
0.425 (235)
1 - (o
and
0.425
B = - 236
1- (o (236)
Then u can be written as
u = cosfew(I1({) - I2(()] (237)
where Il(<) has been evaluated and is given by Equation 231. The integral
12(() is given by
ugclcosdewd (A+B()a
12(¢) = [ *£ ¢C‘_" (A+B()d( (238)

(o g
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with A and B from Equations 235 and 236.

344. Using V from Equation 174, this can be evaluated analytically
The form of the solution depends on whether the level 2z = 4 is above or
below the level =z = (6J57?a)/p . As mentioned in the discussion following
Equation 174, the theory developed so far can be considered justified so
long as Equation 176 holds, i.e., (J57;a1)/p > 1 holds. Since a3 = 0.8
has been selected for the time-varying model this reduces to g < 0.64 .

345. When this condition is satisfied, the solution for Iz({) can be
obtained by carrying out the integration in Equation 238 and obtaining the
constants by requiring a solution to be continuous across the level

z = 015 . I2(<) is found to be

3% %ﬂ_a 1n[%]+8(( - Co)] (<a,
r 2
12(<)=‘EiﬁIzﬂ_A[gT-l]+g[§T'a1]+Aln[%%}+8(al"<°)] al<<<1 (239)

2
EIRTEE RS

where it has been assumed that @ < 1 .

[3
Uxc
| &

346. Therefore Equations 231 and 239 can be used to find the current
velocity profile without the need of numerical integration. The solution
for the conditions of Davies, Soulsby, and King (1988) using Equations 231
and 239 is compared with that obtained by numerical integration in
Figure 32. Equation 239 is a very good approximation to the exact value of
Iz({) . It has been found that the approximation is good for a large range
of 4 and Ap/kh ; so Equation 239 can be used with confidence in the

current solution.

Summary
347. An eddy viscosity model that included time variation was
considered in this Part. The assumption of a weak current relative to the

waves was made in order to obtain simplified approximate equations for the
wave and current motions. The wave problem was similar to the wave problem

of the time-invariant model.
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348. The approximate equations for the current showed that the
component of the mean velocity in the wave direction is governed by a
different equation from that which governs the mean velocity in a direction
normal to the wave motion. This results in a significant increase in the
sensitivity of the current velocity profile to {@¢y , the angle between the
waves and the current, in agreement with experimental evidence. Another
feature is the variation with height of the direction of the mean velocity
when 0° < fcw < 90° —a feature that was not present in the time-invariant
model but was indicated by the sophisticated numerical models.

349. However, the time-varying model is derived only for small values
of 4 and bases its eddy viscosity on the wave shear stress only. This
results in the shear velocity used in the time-varying model, unlike the
time-invariant model, being insensitive to the magnitude or the direction
of the current. When 4 1is small, this effect is negligible, but it may be
significant for stronger currents.

350. Thus, the time-varying model includes a sensitivity to ¢cw that
is not present in the time-invariant model while neglecting an effect that
could be important at higher values of 4 . It should also be remembered
that the solutions obtained are expected to be good only for g < J57;01.

351. These objections notwithstanding, comparisons with the
experimental data indicate that the selection of @ = 0.8 gives good
agreement with all the data sets. The agreement for waves and the current
in the same direction is as good as from the time-invariant model while the
agreement for waves and the current at an angle is much better than that
from the time-invariant model. A value of @ around 0.65 is indicated as
more suitable for conditions with smaller (< 0.1) values of §u .

352. The simple analytic approximation to the integral in the current
solution is very close to the numerical solution. Therefore, the time-
varying model with @; = 0.8 and the current solution given by Equations
231 and 239 is proposed as a simple model for the problem of a current in

the presence of waves.
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PART VI: MODEL SIMPLIFICATION, APPLICATION, AND EXAMPLE CALCULATIONS

353. In this Part the problem of predicting the current velocity
profile in the presence of waves, using the time-varying model, will be
treated in detail. The information needed to solve the problem is
specified along with the equations needed for the solution. The solution
for the friction factor is then simplified to an analytic form. The
solution procedure is then outlined and illustrated with two example

calculations.

Problem Specification

354. To apply the wave-current theory developed in Part V, it is
necessary to specify the bottom roughness in terms of its equivalent
Nikuradse sand grain roughness, kp , and the wave motion in terms of its

period, T , and near-bottom orbital velocity wup = Ap2%/T , i.e.,
kn ' W = ZT/T ’ and uh = A\)U (240)

must be known.
355. The specification of the current may either be in terms of the
average bottom shear stress and its direction relative to the wave motion,

i.e.,
_ 2

Tc = Puie and Pew (241)
or in terms of the current magnitude, at a given level, 2z = z;y , assumed to
be outside the wave boundary layer and its direction relative to the waves,
i.e.,

uc(z = zr) and [ (242)

356. The objective is to calculate the current velocity profile outside

the wave boundary layer once the conditions given above are specified. The

current velocity in the outer region is given from Equations 222 and 225 as
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ue = {((I() - I2(())%cosfcw + In(()zsinwcw}* (243)

357. The value of Il(() in the outer region is given by Equation 231

as

11(¢) = 9—,*C—C 1n —Q‘— + 1 + ug{ln[g—ﬂ - 1] (244)

22
Uz

358. The integral Iz(() can be approximated in the outer region by

Equation 239. Using Equations 235 and 236, this can be written as

0.425 ay

= Ysc (X 0.5 _ a1 _
12(¢) P l—z 7 ifco—[ln[a] iy 3 1+ (o] (245)

359. The angle between the current velocity and the waves, ¢c , is

related to ¢cy by Equation 232, i.e.,

- tan(¢cw) Il(C)]
- tan-l 246
fc({) = tan [Ix(() = 12(0) (246)

360. To illustrate the procedure to obtain the various gquantities that
appear on the right side of Equation 244, it is convenient to restate the

definitions of these guantities defined in earlier chapters. Thus,

po= ¢ (247)

Ux |

gives the relative strength of the current motion to the wave motion. The

wave shear velocity is related to u} , the near bottom wave velocity, by

£
ugy = l%cub (248)

while the values @ and (0 in Equation 244 are defined by
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§ = Kusl (249)

(o = 52y (250)

361. The problem is closed by relating fyg¢ to the parameter Anw/kp
and [ through Equation 205. Note that @; is no longer a free parameter
but has been selected, based on the comparisons presented in Part V, to
take on the value of 0.8. However, solution of Equation 205 is complicated
as it involves the solution of five simultaneous complex equations and the
use of Kelvin functions. Thus, apart from the determination of fy¢ , it is
seen from the equations listed above that the remainder of the problem is
in a form that can be solved using no more powerful computational tools
than a hand calculator. Therefore, if a simplified form of Equation 205
can be found, the application of this theory to practical problems will be

significantly facilitated.

Simplified Wave Friction Factor Determination

J62. As seen in Figure 25 the wave friction factor in the presence of
currents is only a very weak function of g —the parameter that gives the
strength of the current relative to the waves. Thus, for practical

applications it suffices to consider

fwc = f[it—)] (251)
kn

which means that the entire closure problem effectively collapses to a
single curve in the wave friction diagram.

363. It is of interest to examine how closely this curve is represented
by the GM model’s closure which may be obtained from Equation 71, with A

given by Equation 65, and reads

fwe =

J2K ker’ (2y/Co) + i kei’ (2/(o) (252)
ker (2y/(o) + i kei(2y/(p)
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364. The wave friction far »r obtained from the GM model, Equation 252,
is compared with the wave friction factor from the time-varying model with
@y = 0.8 and g arbitrarily chosen to be 0.2, in Figure 33. The figure
shows that the two friction factors have very similar variations with Ap/kp
wicth the value from the time-varying model being less by about 9 percent.

365. Using the asymptotic expressions for Kelvin function in the limit
of (o -+ 0 , given by Abramowitz and Stegun (1972), and following the

development of Grant (1977), the asyrnptotic form of Equation 252 becomes

] = logw[%%] - M (253)

with M = 0.17 . This expression is identical to the semi-empirical wave
friction factor formula obtained by Jonsson and Carlsen (1976) when M is

taken as 0.08.
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Figure 33. Wave-current friction factor from the time-varying model with

= 0.2 compared with the wave friction factor from the GM model and the
approximation given by Equation 254 and 255

139




366. It is evident from the form of Equation 253 that the actual value
of M 1is immaterial as Ap/kn becomes large. Thus, rather than using the
theoretical value of M = 0.17 , a value of M = -0.1 1in Equation 253 was
found to give a better representation of the "exact" wave friction factor
from the time-varying model for intermediate values while not sacrificing
the accuracy for large values of Ap/kn . For this reason, the modified
friction factor may be obtained from the equation

] = 1ogm[i—:] + 0.1 (254)

V4fwc

+ loglo{
a/Ewc

which, for values of Ap/ky > 103 , is readily solved by iteration. The
modified wave friction factors, fyc , obtained from Equation 254 are
compared with the exact values in Figure 33, and the agreement is seen to
be excellent for values of ap/kp > 1,000 .

367. For lower values of Ap/kn , the accuracy of the approximation
afforded by Equation 254 deteriorates. However, for the range Ap/kp <
1,000 , the modified wave friction factor may, following Swart (1974), be

expressed as

-0.19 -1.2
fwe = exp[s.z[éb] - 6.1] - O.24[ﬂb] (255)
kn kIl

which, as demonstrated in Figure 33, provides an excellent (and simple)
representation of the exact formulation for BAp/ky < 1,000 .

368. Thus, the cumbersome procedure of solving five simultaneous
complex equations and solving Equation 205 by iteration can, for
applications, be replaced by the relatively far simpler evaluation of fyg¢
from Equation 254, for Al/kp > 1,000 , and Equation 255, for Ap/kp <
1,000 .

Sclution Procedure

369. The procedure to be followed depends on whether the current is
specified by Equation 241 or by Equation 242. The procedure for each case

is described in the next two sectio
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Solution for a current
specified by the bottom shear stress

370. 1In the simplification of the wave problem described in the
preceding section, the wave friction factor, fyw¢ , which was only a very
weak function of the current, is assumed completely independent of the
current magnitude and direction. This makes the solution straightforward.
The procedure is described a step at a time:

a. Calculate the value Ap/kp from the given wave conditions
and bottom roughness.

b. Calculate fyc wusing the appropriate equation, Equation 254
or 255.

€. Find uy; wusing Equation 248.
d. Find f from Equation 247 and § from Equation 249.
371. Now all the quantities needed to evaluate the cur:@ent velocity
profile are known; therefore uc and ¢c can be found at any height above
the bottom using Equations 243-246.

Solution for the current specified
by its magnitude and direction at z = 2z

372. The procedure in this case is more complicated because uy: and
fcw are both unknowns to be determined as part of the solution. This
requires an iterative procedure.

373. As before, the wave friction factor can be calculated first since
it is independent of the current. The steps are:

a. Find Ap/kn from the given wave properties and bottom
roughness.

b. Calculate fy¢ wusing the appropriate equation, Equation 254
or 255.

c. Find u4w , f , and & from Equations 248, 247, and 249,
respectively.

374. Now it can be seen that all the terms on the right side of
Equations 244 and 245 are known except wuy¢ . An initial estimate for uyc

can be obtained by assuming that waves are not present and that the

velocity is logarithmic. This leads to
(0 - __ Kuc
e In(zy/2zp) (256)

where the superscript denotes the stage of the iteration. A good initial

estimate for ¢cw is the angle between the current and the waves, i.e.,
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¢cw(0) = ¢c

(257)
375. The next steps of the procedure are as follows:
d. calculate values for uc and §¢, termed uc’ and ¢’
respectively, using Equations 243-246
e. Update the estimates of uyc¢ and ¢cw using the relations
u*c(l) = =% u*c“)) (258)
uc
few'V = few'® + (dc - 4c) (259)
376. Steps d and e are repeated until the values of u¢ and ¢c
converge.
Example Calculations
377. Two example calculations are presented to illustrate the
procedures outlined in the preceding section, one for each method of
specifying the current.
Example 1
378. The chosen wave and bottom roughness parameters are
up = 25.7 cm/sec , ¥ = 3.14 sec’! , kp = 2.1 cm {260)
and the current is specified by
ugc = 1.45 cm/sec , few = O° (261)
379. From the values in Equation 260, it is found that
A
2b - 3.9 (262)
kn

so that Equation 255 will be the appropriate equation for the wave friction

factor. Use of this equation results in

fwc = 0.077 (263)
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and from Equations 247-250, it is seen that

p=0.28 ; O6=0.64cm ; (o= 0.109 (264)

380. Equation 264 along with the given value of wuyg¢ can be used in
Equations 243-245 to calculate the current velocity profile. The velocity
at z = 4.6 cm 1is found to be 8.2 cm/sec. This shows that the solution
obtained is correct because the conditions specified by Equations 260 and
261 correspond to the data set BVD10 and the value of uy,¢ given was that
calculated in Part V. The current specification for the set BVD20 was
uc = 8.2 cm/sec at z = 4.6 cm , which is the same value as obtained
above. If the full velocity profile is desired, it may of course be

calculated from Equations 231 and 239.

Example 2
381. The chosen wave and bottom roughness parameters are
up = 100 cm/sec , kn = 15 cm |, ¥ = 0.785 sec-l (265)

and the current is specified by

uec = 49.3 cm/sec , fc = 48° at zp = 88.5 cm (266)

From Equation 265, it is seen that

Ap _
n = 8.5 (267)
so here too Equation 255 should be used to calculate fyg¢: . Using this

equation along with Equations 247-250 results in the following parameters

for the wave boundary layer
6§ =8.3 cm , Ugl] = 16.3 cm/sec , CO = 0.06 (268)
These values can be substituted in Equations 244 and 245 along with

a; = 0.8, K =20.4, and the definition of | to express 1I; and Iy with

uyc the only unknown. The equations are
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Ii(zr) 2.5 Uue[1n(1.025uy¢) + 0.122uyc + 1] cm/sec (269)

0.163u*c2 cm/sec (270)

I2(z2r)

where wuyc¢ 1is in cm/sec. These two expressions make steps d and e of the
solution much easier to carry out. The values of uyc , ¢cw , I1, Io,
ue’ , and ¢c’ at each step of the iteration are given in Table 11. The
convergence is fairly rapid.

382. The calculated value of wuye is 5.92 cm/sec and (@cw = 44.7° ,
which indicate that the solution is correct because the conditions
specified by Equation 265 correspond to the data set DV1045 (i.e.,
uge = 5.92 cm/sec, ¢cw = 45°) and the specified current velocity and
direction were taken from the profile generated for that data set, which is

presented in Figure 30.

Table 11

Example Calculation for a Current Specified by

Its Velocity and Direction at a Height z = z,

Iteration  ugc bew 1, I, ue’ g’
Level cm/s deg cm/s cm/s cm/s deg
0 3.81 48 26.9 2.4 25.7 50.6
1 7.31 45.3 71.4 8.7 67.2 48.0
2 5.36 44.3 45.0 4.7 42.7 47.4
3 6.19 44.9 55.8 6.2 52.7 48.3
4 5.79 44.6 50.5 5.5 47.8 47.9
S 5.97 44.7 52.8 5.8 50.0 48.0
6 5.88 44.7 51.7 5.6 49.0 48.0
7 5.92 44.7 52.2 5.7 49.4 48.0

144




PART VII: CONCLUSIONS

383. The objective of this study was to develop a model of the
interaction between the turbulent wave and current boundary layers. It was
required that the model be simple enough to permit efficient analytic
solutions while at the same time being able to capture the important
aspects of the problem. The simple closure of the turbulence problem by an
assumed eddy viscosity model was selected, and only the case of turbulent
flow over a fixed, horizontal bed was considered.

384. As a first step, the development of such models for the wave and
wave-current problems as given in the literature was reviewed. It was seen
that many of the models proposed in the literature had not been verified by
a comparison with experimental or field data. Therefore, three of the more
recent models were selected and compared with experimental data from the
wave and wave-current boundary layers. These models differed in the
definition of the velocity scale for the eddy viscosity and in the assumed
vertical structure of the eddy viscosity.

385. The comparisons indicate that the model of Grant and Madsen (1979
and 1986) is the most successful of the existing models considered in
representing the available experimental data. The distinguishing features
of this model are the use of the current shear velocity to scale the eddy
viscosity in the outer layer, the use of the maximum shear stress to define
the combined shear velocity inside the wave boundary layer, and the use of
a boundary layer length scale based on the maximum shear velocity.

386. The resulting current velocity profile is logarithmic in both
layers—a feature shown by the experimental data. The flow in the outer
region is similar to the pure current case except that the bottom
resistance is increased due to the added turbulence contributed by the wave
motion within the wave boundary layer.

387. The main disadvantage of the GM model is that it uses an eddy
viscosity that is discontinuous at the edge of the wave boundary layer.
This formulation is not physically realistic and leads to a poor
representation of the current velocity profile in the transition region
between the wave boundary layer and the current boundary layer.

388. The improved model discussed in Part IV attempts to remove this

drawback by using a more complicated but more realistic continuous vertical
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structure of the eddy viscosity. This results in a somewhat more complex
solution procedure. However, it should be noted that the model still
involves only one free parameter, as does the GM model. Therefore, the
fact that this model gives better agreement with the data than the GM model
can be attributed entirely to the more realistic eddy viscusity formulaticon
and not to the use of more model parameters.

389. Two different values of the free model parameter were suggested
from the comparisons with the wave and wave-current experimental data. A
single value (@ = 0.5) was selected as a reasonable compromise on the
grounds that it gives a good representation of the current velocity
profiles while not being seriously in error for the wave boundary layer.

390. The rather complicated solution of the wave problem in this model
was simplified by the introduction of the modified friction factor and
excursion amplitude defined in Part IV.

391. While the improved model gave excellent results for a current
velocity profile with waves in the same direction, it could not adequately
represent the effect of a change in the angle between the waves and the
current. The deflection of the current velocity away from the direction of
the mean shear stress, which was a feature of sophisticated numerical
models, was also not represented by the time-invariant model.

392. These drawbacks were a result of the eddy viscosity being assumed
time invariant. Therefore, a model that included time variation of the
eddy viscosity was developed in Part V. The assumption of a weak current
relative to the waves (small (i) was made to obtain tractable approximate
governing equation for the waves and for the current. The equations thus
derived for the current included an explicit dependence on the angle
between the waves and the current, in contrast to the time-invariant
models.

393. While the time-varying model involved much more algebra than
before, the final solution for the wave problem was shown to be very
similar to that from the time-invariant model. After comparison with the
experimental data, the value of the free model parameter was chosen to be
@y = 0.8 . This value provided good agreement even with data sets where the
value of j} was not very small. The solution of the current problem
involved numerical integration, but a simple, accurate, analytic

approximation was developed that made this unnecessary. The result was a
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model that allowed an analytic evaluation of the current velocity profile
just as in the time-invariant model. However, as shown in Figure 30, this
model is much more sensitive to the angle between the waves and the current
than previous models. Therefore, this model is presented as a simple but
realistic model for the problem of a current in the presence of waves.

394. The similarity of the wave fricticn factor diagrams from the time-
varying and GM models was used in Part VI to develop analytic
approximations to the friction factor, thereby avoiding the use of Kelvin
function and the solution of complex simultaneous equations. A procedure
wag outlined whereby practical problems could be solved efficiently using a
no more powerful tool than a hand calculator. This procedure can also be

incorporated with ease into a computer program.
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APPENDIX A: NOTATION

A complex constant

Ap excursion amplitude

AL’ modified excursion amplitude

B complex constant

c wave celerity

C complex constant

d boundary layer thickness in TS model in Part III
D complex constant

E complex constant

fw wave friction factor

fwe wave friction factor in the presence of currents
fwe’ modified wave friction factor

F complex constant

g acceleration due to gravity

h flow depth

i V-1
Ii(z) integral in solution for current velocity profile in time-varying
model

Ii(z) integral in solution for current velocity profile in time-varying

model
k wave number
kb physical scale of bottom roughness
kn equivalent Nikuradse roughness
K’ parameter in TS model in Part III
1 mixing length
1 height of boundary layer in GM and SM models in Part III
L length scale
P pressure
Pw pressure due to wave motion
Pc pressure due to current motion
Px pressure just outside wave boundary layer
P constart in the time-varying model Equation 206
Q constant in the time-varying model Equation 211
R{z) ratio of 1I32(z) to Ii(z)




s parameter in TS model in Part III s = d/zj

t time

t transformed time variable Equation 182

u horizontal velocity in wave direction

up magnitude of near-bottom wave velocity

ue current (mean) velocity

uq complex nondimensional wave deficit velocity

ud complex nondimensional wave deficit velocity in time-varying model
udi component of ug

ugd? component of ﬁd

uds component of ug

Uw wave velocity

uwi first harmonic wave velocity in time-varying model
Uw? third harmonic wave velocity in time-varying model
u’ turbulent velocity fluctuation about the mean

Uy shear velocity

Uge current shear velocity

Uscw combined wave-current shear velocity
Ugm shear velocity based on maximum shear stress

Ugw wave shear velocity

Uyl shear velocity due to first harmonic wave shear stress in time-varying
model
u velocity scale

U’ (z) nondimensional gradient of udi Equation 217

v horizontal velocity in direction normal to wave direction
w vertical velocity

w’ turbulent fluctuation in vertical velocity

x horizontal coordinate in wave direction

Y horizontal coordinate in direction normal to waves

z vertical coordinate

Zh flow depth

Zr reference level at which current is specified

Z9 bottom roughness parameter 2zg = ky/30




a free parameter in improved time-invariant model
a free parameter in time-varying model
Ji} parameter in TS model [ = da/6
7 free parameter in GM and SM models in Part III
94 argument of audx/az at z = zg in time-varying model
) boundary layer length scale
€ ratio of current shear velocity to combined shear velocity
¢ nondimensional vertical coordinate ( = z/6
(n nondimensional flow depth
0 phase of bottom shear stress 0 = wt + ¢2
K van Karman's constant K = 0.4
ratio of current shear velocity to wave shear velocity
v molecular viscosity
vy turbulent eddy viscosity
P density
T shear stress
Tij shear stress in direction 3j on plane normal to direction i
Th bottom shear stress
Thm maximum bottom shear stress
Tc bottom shear stress due to current
Tw bottom shear stress due to waves
de angle made by current velocity vector with wave direction
¢cw angle between waves and th> current
¢2 phase of first harmonic bottom shear stress
¢3 phase of third harmonic bottom shear stress
U angular frequency
Re real part of a complex number
l | modulus of a complex number
) horizontal gradient operator
Superscripts
- mean value of a gquantity
- vector quantity
(0), (1) levels of iteration in the solution procedure of Part VI
~ time-varying portion of a quantity




Subscripts

c concerned with the current motion

e even harmonics of a time-varying quantity
o even harmonics of a time-varying guantity
w concerned with the wave motion




